Evaluation of Mechanical and Physical Properties of Hybrid Composites from Food Packaging and Textiles Wastes

Tamer Hamouda, Ahmed H. Hassanin, Naheed Saba, Mustafa Demirelli, Ali Kilic, Zeki Candan, Mohammad Jawaid

Research output: Contribution to journalArticlepeer-review

33 Citations (Scopus)


In the present work, hybrid composites were designed by using shredded Tetra Pak packages as food packaging wastes and wool yarn wastes as textiles wastes for potential alternative construction and building materials. Hybrid composites were fabricated by mixing different ratios (0, 5, 10, 15 and 20 wt%) of wool yarn wastes with shredded Tetra Pak wastes. Mechanical properties in terms of flexural, tensile strength, internal bonding (IB) in addition to the impact properties and physical properties in terms of thickness swelling (TS), water absorption (WA) and density of the fabricated composites were analyzed and compared with the properties of commercial wood particleboards. Results showed that when the ratios of wool yarn wastes increased to 15% in hybrid composites, modulus of rupture value reached 15.10 ± 1.01 MPa which is higher than that of particleboards (types P2, P4, and P6 as per the British Standards—BS). The highest IB strength was found to be 0.60 MPa for the hybrid composites with 10% wool yarn content, while IB values of the other samples reduced with increasing the amount of wool yarn wastes. Moreover, TS and WA of the fabricated hybrid composites were found to be better than commercial particleboards and they also encountered the minimum strength requirements in BS. Overall, we concluded that the developed hybrid composites from agro-industrial waste materials could be utilized as promising alternative source of raw materials to manufacture value added eco-friendly, advanced and sustainable structural applications such as wood panels.

Original languageEnglish
Pages (from-to)489-497
Number of pages9
JournalJournal of Polymers and the Environment
Issue number3
Publication statusPublished - Mar 15 2019
Externally publishedYes


  • Hybrid composites
  • Mechanical properties
  • Solid wastes
  • Structural applications
  • Tetra Pak
  • Wool yarn wastes

ASJC Scopus subject areas

  • Environmental Engineering
  • Polymers and Plastics
  • Materials Chemistry


Dive into the research topics of 'Evaluation of Mechanical and Physical Properties of Hybrid Composites from Food Packaging and Textiles Wastes'. Together they form a unique fingerprint.

Cite this