Evolution of the insulin molecule: Insights into structure-activity and phylogenetic relationships

J. Michael Conlon

Research output: Contribution to journalReview articlepeer-review

112 Citations (Scopus)


The conformation of insulin in the crystalline state has been known for more than 30 years but there remains uncertainty regarding the biologically active conformation and the structural features that constitute the receptor-binding domain. The primary structure of insulin has been determined for at least 100 vertebrate species. In addition to the invariant cysteines, only ten amino acids (GlyA1, IleA2, ValA3, TyrA19, LeuB6, GlyB8, LeuB11, ValB12, GlyB23 and PheB24) have been fully conserved during vertebrate evolution. This observation supports the hypothesis derived from alanine-scanning mutagenesis studies that five of these invariant residues (IleA2, ValA3, TyrA19, GlyB23, and Phe24) interact directly with the receptor and five additional conserved residues (LeuB6, GlyB8, LeuB11, GluB13 and PheB25) are important in maintaining the receptor-binding conformation. With the exception of the hagfish, only conservative substitutions are found at B13 (Glu → Asp) and B25(Phe → Tyr). In contrast, amino acid residues that were also considered to be important in receptor binding based upon the crystal structure of insulin (GluA4, GlnA5, AsnA21, TyrB16, TyrB26) have been much less well conserved and are probably not components of the receptor-binding domain. The hypothesis that LeuA13 and LeuB17 form part of a second receptor-binding site in the insulin molecule finds some support in terms of their conservation during vertebrate evolution, although the site is probably absent in some hystricomorph insulins. In general, the amino acid sequences of insulins are not useful in cladistic analyses especially when evolutionary distant taxa are compared but, among related species in a particular order or family, the presence of unusual structural features in the insulin molecule may permit a meaningful phylogenetic inference. For example, analysis of insulin sequences supports monophyletic status for Dipnoi, Elasmobranchii, Holocephali and Petromyzontiformes.

Original languageEnglish
Pages (from-to)1183-1193
Number of pages11
Issue number7
Publication statusPublished - 2001
Externally publishedYes


  • Insulin
  • Phylogeny
  • Receptor-binding
  • Structure-activity
  • Vertebrate evolution

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Endocrinology
  • Cellular and Molecular Neuroscience


Dive into the research topics of 'Evolution of the insulin molecule: Insights into structure-activity and phylogenetic relationships'. Together they form a unique fingerprint.

Cite this