TY - GEN
T1 - Face detection based on multi-block LBP representation
AU - Zhang, Lun
AU - Chu, Rufeng
AU - Xiang, Shiming
AU - Liao, Shengcai
AU - Li, Stan Z.
PY - 2007
Y1 - 2007
N2 - Effective and real-time face detection has been made possible by using the method of rectangle Haar-like features with AdaBoost learning since Viola and Jones' work [12]. In this paper, we present the use of a new set of distinctive rectangle features, called Multi-block Local Binary Patterns (MB-LBP), for face detection. The MB-LBP encodes rectangular regions' intensities by local binary pattern operator, and the resulting binary patterns can describe diverse local structures of images. Based on the MB-LBP features, a boosting-based learning method is developed to achieve the goal of face detection. To deal with the non-metric feature value of MB-LBP features, the boosting algorithm uses multi-branch regression tree as its weak classifiers. The experiments show the weak classifiers based on MB-LBP are more discriminative than Haar-like features and original LBP features. Given the same number of features, the proposed face detector illustrates 15% higher correct rate at a given false alarm rate of 0.001 than haar-like feature and 8% higher than original LBP feature. This indicates that MB-LBP features can capture more information about the image structure and show more distinctive performance than traditional haar-like features, which simply measure the differences between rectangles. Another advantage of MB-LBP feature is its smaller feature set, this makes much less training time.
AB - Effective and real-time face detection has been made possible by using the method of rectangle Haar-like features with AdaBoost learning since Viola and Jones' work [12]. In this paper, we present the use of a new set of distinctive rectangle features, called Multi-block Local Binary Patterns (MB-LBP), for face detection. The MB-LBP encodes rectangular regions' intensities by local binary pattern operator, and the resulting binary patterns can describe diverse local structures of images. Based on the MB-LBP features, a boosting-based learning method is developed to achieve the goal of face detection. To deal with the non-metric feature value of MB-LBP features, the boosting algorithm uses multi-branch regression tree as its weak classifiers. The experiments show the weak classifiers based on MB-LBP are more discriminative than Haar-like features and original LBP features. Given the same number of features, the proposed face detector illustrates 15% higher correct rate at a given false alarm rate of 0.001 than haar-like feature and 8% higher than original LBP feature. This indicates that MB-LBP features can capture more information about the image structure and show more distinctive performance than traditional haar-like features, which simply measure the differences between rectangles. Another advantage of MB-LBP feature is its smaller feature set, this makes much less training time.
UR - http://www.scopus.com/inward/record.url?scp=37849019616&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=37849019616&partnerID=8YFLogxK
U2 - 10.1007/978-3-540-74549-5_2
DO - 10.1007/978-3-540-74549-5_2
M3 - Conference contribution
AN - SCOPUS:37849019616
SN - 9783540745488
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 11
EP - 18
BT - Advances in Biometrics - International Conference, ICB 2007, Proceedings
PB - Springer Verlag
T2 - 2007 International Conference on Advances in Biometrics, ICB 2007
Y2 - 27 August 2007 through 29 August 2007
ER -