Flash flood susceptibility modeling and magnitude index using machine learning and geohydrological models: A modified hybrid approach

Samy Elmahdy, Tarig Ali, Mohamed Mohamed

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

In an arid region, flash floods (FF), as a response to climate changes, are the most hazardous causing massive destruction and losses to farms, human lives and infrastructure. A first step towards securing lives and infrastructure is the susceptibility mapping and predicting of occurrence sites of FF. Several studies have been applied using an ensemble machine learning model (EMLM) but measuring FF magnitude using a hybrid approach that integrates machine learning (MCL) and geohydrological models have not been widely applied. This study aims to modify a hybrid approach by testing three machine learning models. These are boosted regression tree (BRT), classification and regression trees (CART), and naive Bayes tree (NBT) for FF susceptibility mapping at the northern part of the United Arab Emirates (NUAE). This is followed by applying a group of accuracy metrics (precision, recall and F1 score) and the receiving operating characteristics (ROC) curve. The result demonstrated that the BRT has the highest performance for FF susceptibility mapping followed by the CART and NBT. After that, the produced FF map using the BRT was then modified by dividing it into seven basins, and a set of new FF conditioning parameters namely alluvial plain width, basin gradient and mean slope for each basin was calculated for measuring FF magnitude. The results showed that the mountainous and narrower basins (e.g., RAK, Masafi, Fujairah, and Rol Dadnah) have the highest probability occurrence of FF and FF magnitude, while the wider alluvial plains (e.g., Al Dhaid) have the lowest probability occurrence of FF and FF magnitude. The proposed approach is an effective approach to improve the susceptibility mapping of FF, landslides, land subsidence, and groundwater potentiality obtained using ensemble machine learning, which is used widely in the literature.

Original languageEnglish
Article number2695
JournalRemote Sensing
Volume12
Issue number17
DOIs
Publication statusPublished - Sept 1 2020

Keywords

  • BRT
  • CART
  • Flash flood
  • Geohydrological model
  • NUAE
  • Naive Bayes tree

ASJC Scopus subject areas

  • Earth and Planetary Sciences(all)

Fingerprint

Dive into the research topics of 'Flash flood susceptibility modeling and magnitude index using machine learning and geohydrological models: A modified hybrid approach'. Together they form a unique fingerprint.

Cite this