Flaxseed- and chia seed-derived protein hydrolysates exhibiting enhanced in vitro antidiabetic, anti-obesity, and antioxidant properties

Priti Mudgil, Feyisola Fisayo Ajayi, Amani Alkaabi, Maitha Alsubousi, Brij Pal Singh, Sajid Maqsood

Research output: Contribution to journalArticlepeer-review

Abstract

This study investigated in vitro antidiabetic, anti-obesity, and antioxidant activities of chia seed protein hydrolysates (CSPHs) and flaxseed protein hydrolysates (FSPHs) generated using three food-grade proteases at the hydrolysis at intervals of 120 min for 6 h. The inhibitory potentials of CSPHs and FSPHs on the enzymatic biomarkers related to diabetes (α-glucosidase and DPP-4) and obesity (pancreatic lipase and cholesteryl esterase) were determined. The antioxidant capacity of CSPHs and FSPHs was also assessed using ABTS, DPPH, and FRAP antioxidant assays. Increasing the proteolytic reaction time was shown to significantly increase the degree of hydrolysis values of CSPHs and FSPHs. Protein hydrolysates resulted in higher inhibitory potential against enzymatic biomarkers related to metabolic diseases (diabetes and obesity) as well as higher antioxidant activities compared with undigested proteins. Overall, the lowest IC50 inhibition values demonstrated in DPP-IV were observed by alcalase-catalyzed CSPH at 6 h (IC50 = 272.17 μg/mL) and bromelain-catalyzed FSPH at 6 h (IC50 = 338.70 μg/mL). The strongest inhibition of pancreatic lipase was observed in bromelain-catalyzed hydrolysates (IC50 = 292.43 μg/mL and IC50 = 307.62 μg/mL for CSPH and FSPH, respectively) after 6 h. These findings indicate that CSPHs and FSPHs exhibited enhanced antidiabetic, anti-obesity, and antioxidant properties. Therefore, these hydrolysates can be successfully used for their applications in the development of functional foods.

Original languageEnglish
Article number1223884
JournalFrontiers in Sustainable Food Systems
Volume7
DOIs
Publication statusPublished - 2023

Keywords

  • anti-obesity
  • antidiabetic
  • antioxidant
  • chai seed
  • flaxseed
  • protein hydrolysates

ASJC Scopus subject areas

  • Global and Planetary Change
  • Food Science
  • Ecology
  • Agronomy and Crop Science
  • Management, Monitoring, Policy and Law
  • Horticulture

Fingerprint

Dive into the research topics of 'Flaxseed- and chia seed-derived protein hydrolysates exhibiting enhanced in vitro antidiabetic, anti-obesity, and antioxidant properties'. Together they form a unique fingerprint.

Cite this