Flow maldistribution in multichanneled microdevices with in-line manifolds

J. Soman, T. J. John, B. Mathew, H. Hegab

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This paper deals with the analyses of fluid flow distribution in a microfluidic device with in-line manifolds. The analysis was performed using commercially available microfluidic simulation software called CoventorWare™. The number of channels in the microfluidic device considered for this study was kept at ten due to limitations on the number of nodes and computational time. Channels with only square profile were analyzed for flow rates varying between 1 to 60 ml/min. The length of the channels was maintained at 1.5 cm for all simulations. The fluid flow distribution characteristics for different channel widths/depths (200, 100, and 75 μm) were investigated. It was observed that the flow rate decreased from the central channels to the outer channels. The flow per channel was symmetric about the geometric centre of the microdevice. The uniformity in flow was accessed using the root mean square value of flow per channel and it decreased with decrease in channel width/depth for a specific flow rate. The difference in the flow rate through the channels increased with increase in total flow rate. Similarly, the spacing between the channels was varied (300, 200, and 100 μm) for a microdevice with channel width/depth of 100 μm and its corresponding flow characteristics were studied for flow rate ranging between 1 ml/min and 60 ml/min. Finally, the length of each manifold was varied between 2500 μm and 1000 μm for understanding the effect of manifold length on flow distribution. The standard deviation of flow per channel did not show much variation with changes in spacing and manifold length. In addition each design of the manifolds was analyzed on the basis of pressure and flow rate as well as velocity profile in each of the channels.

Original languageEnglish
Title of host publicationProceedings of the ASME International Mechanical Engineering Congress and Exposition 2009, IMECE 2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages331-338
Number of pages8
EditionPART A
ISBN (Print)9780791843826
DOIs
Publication statusPublished - 2010
Externally publishedYes
EventASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009 - Lake Buena Vista, FL, United States
Duration: Nov 13 2009Nov 19 2009

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
NumberPART A
Volume9

Conference

ConferenceASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009
Country/TerritoryUnited States
CityLake Buena Vista, FL
Period11/13/0911/19/09

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Flow maldistribution in multichanneled microdevices with in-line manifolds'. Together they form a unique fingerprint.

Cite this