Fluid-structure interaction analysis of pulsatile blood flow and heat transfer in living tissues during thermal therapy

Abdalla Mohamed AlAmiri

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)


The current numerical investigation tackles the fluid-structure interaction in a blood vessel subjected to a prescribed heating scheme on tumor tissues under thermal therapy. A pulsating incompressible laminar blood flow was employed to examine its impact on the flow and temperature distribution within the blood vessel. In addition, the arterial wall was modeled using the volume-averaged porous media theory. The motion of a continuous and deformable arterial wall can be described by a continuous displacement field resulting from blood pressure acting on the tissue. Moreover, discretization of the transport equations was achieved using a finite element scheme based on the Galerkin method of weighted residuals. The numerical results were validated by comparing them against documented studies in the literature. Three various heating schemes were considered: constant temperature, constant wall flux, and a step-wise heat flux. The first two uniform schemes were found to exhibit large temperature variation within the tumor, which might affect the surrounding healthy tissues. Meanwhile, larger vessels and flexible arterial wall models render higher variation of the temperature within the treated tumor, owing to the enhanced mixing in the vicinity of the bottom wall.

Original languageEnglish
Article number041103
JournalJournal of Fluids Engineering, Transactions of the ASME
Issue number4
Publication statusPublished - 2013


  • FSI
  • hyperthermia
  • numerical
  • porous medium
  • pulsatile pipe flow

ASJC Scopus subject areas

  • Mechanical Engineering


Dive into the research topics of 'Fluid-structure interaction analysis of pulsatile blood flow and heat transfer in living tissues during thermal therapy'. Together they form a unique fingerprint.

Cite this