Abstract
The mechanism of secretory granule formation and exocytosis in the endocrine cells of normal and transplanted rat pancreas was studied using electron microscopy. On the one hand, formation of secretory granules starts with the dilatation of the 2 ends or the vesicularization of the middle parts of rough endoplasmatic reticulum (RER). On the other hand, prohormone ribosomes condense into the vesicles of the GOLGI apparatus. This probably indicates that the GOLGI complex is not the only source of formation of secretory granules. Exocytosis occurs with the formation of an electron dense streak between the perigranular membrane and the apical cell membrane. This is followed by the rupture of the streak at this midpoint allowing the granule to extrude into the space between the cell membrane and the parenchymal basal membrane. This fusion-rupture-extrusion mechanism repeats itself at the parenchymal and capillary basal membranes and also at the endothelium until it gets into the capillary lumen, showing that hormones of pancreatic endocrine cells may be actively transported into circulation as intact secretory granules. There is no significant morphological difference between the mechanism of secretory granule formation in normal and transplanted pancreatic tissue.
Original language | English |
---|---|
Pages (from-to) | 697-704 |
Number of pages | 8 |
Journal | Gegenbaurs morphologisches Jahrbuch |
Volume | 135 |
Issue number | 5 |
Publication status | Published - 1989 |
Externally published | Yes |