TY - JOUR
T1 - From cytokines to chemokines
T2 - Understanding inflammatory signaling in bacterial meningitis
AU - Ibrahim, Ahsan
AU - Saleem, Nida
AU - Naseer, Faiza
AU - Ahmed, Sagheer
AU - Munawar, Nayla
AU - Nawaz, Rukhsana
N1 - Publisher Copyright:
© 2024 Elsevier Ltd
PY - 2024/9
Y1 - 2024/9
N2 - Bacterial meningitis is a serious central nervous system (CNS) infection, claiming millions of human lives annually around the globe. The deadly infection involves severe inflammation of the protective sheath of the brain, i.e., meninges, and sometimes also consists of the brain tissue, called meningoencephalitis. Several inflammatory pathways involved in the pathogenesis of meningitis caused by Streptococcus pneumoniae, Neisseria meningitidis, Escherichia coli, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus suis, etc. are mentioned in the scientific literature. Many in-vitro and in-vivo analyses have shown that after the disruption of the blood-brain barrier (BBB), these pathogens trigger several inflammatory pathways including Toll-Like Receptor (TLR) signaling in response to Pathogen-Associated Molecular Patterns (PAMPs), Nucleotide oligomerization domain (NOD)-like receptor-mediated signaling, pneumolysin related signaling, NF-κB signaling and many other pathways that lead to pro-inflammatory cascade and subsequent cytokine release including interleukine (IL)-1β, tumor necrosis factor(TNF)-α, IL-6, IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1) along with other mediators, leading to neuroinflammation. The activation of another protein complex, nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome, also takes place resulting in the maturation and release of IL-1β and IL-18, hence potentiating neuroinflammation. This review aims to outline the inflammatory signaling pathways associated with the pathogenesis of bacterial meningitis leading to extensive pathological changes in neurons, astrocytes, oligodendrocytes, and other central nervous system cells.
AB - Bacterial meningitis is a serious central nervous system (CNS) infection, claiming millions of human lives annually around the globe. The deadly infection involves severe inflammation of the protective sheath of the brain, i.e., meninges, and sometimes also consists of the brain tissue, called meningoencephalitis. Several inflammatory pathways involved in the pathogenesis of meningitis caused by Streptococcus pneumoniae, Neisseria meningitidis, Escherichia coli, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus suis, etc. are mentioned in the scientific literature. Many in-vitro and in-vivo analyses have shown that after the disruption of the blood-brain barrier (BBB), these pathogens trigger several inflammatory pathways including Toll-Like Receptor (TLR) signaling in response to Pathogen-Associated Molecular Patterns (PAMPs), Nucleotide oligomerization domain (NOD)-like receptor-mediated signaling, pneumolysin related signaling, NF-κB signaling and many other pathways that lead to pro-inflammatory cascade and subsequent cytokine release including interleukine (IL)-1β, tumor necrosis factor(TNF)-α, IL-6, IL-8, chemokine (C-X-C motif) ligand 1 (CXCL1) along with other mediators, leading to neuroinflammation. The activation of another protein complex, nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3 (NLRP3) inflammasome, also takes place resulting in the maturation and release of IL-1β and IL-18, hence potentiating neuroinflammation. This review aims to outline the inflammatory signaling pathways associated with the pathogenesis of bacterial meningitis leading to extensive pathological changes in neurons, astrocytes, oligodendrocytes, and other central nervous system cells.
KW - Bacterial meningitis
KW - Blood-brain barrier
KW - Infection of central nervous system
KW - Meninges
KW - Neuroinflammation
KW - PAMPs
UR - http://www.scopus.com/inward/record.url?scp=85200731637&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85200731637&partnerID=8YFLogxK
U2 - 10.1016/j.molimm.2024.07.004
DO - 10.1016/j.molimm.2024.07.004
M3 - Review article
C2 - 39116800
AN - SCOPUS:85200731637
SN - 0161-5890
VL - 173
SP - 117
EP - 126
JO - Molecular Immunology
JF - Molecular Immunology
ER -