TY - JOUR
T1 - Frondoside a enhances the anti-cancer effects of oxaliplatin and 5-fluorouracil on colon cancer cells
AU - Attoub, Samir
AU - Arafat, Kholoud
AU - Khalaf, Tamam
AU - Sulaiman, Shahrazad
AU - Iratni, Rabah
N1 - Funding Information:
Acknowledgments: This work was supported by the CMHS Grant (31M146), was partly supported by the Terry Fox UAE Grant (21M081) to S.A., and was partly supported by the ZCHS Research Grant (31R086) to R.I. The funders had no role in the study design, the data collection and analysis, the decision to publish, or the preparation of the manuscript.
Publisher Copyright:
© 2018 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2018/5
Y1 - 2018/5
N2 - Over recent years, we have demonstrated that Frondoside A, a triterpenoid glycoside isolated from an Atlantic sea cucumber, has potent in vitro and in vivo anti-cancer effects against human pancreatic, breast, and lung cancer. We have also demonstrated that Frondoside A is able to potentiate and/or synergize the anti-cancer effects of major classical cytotoxic agents, namely, gemcitabine, paclitaxel, and cisplatin, in the treatment of pancreatic, breast, and lung cancer, respectively. This study evaluates the impact of Frondoside A alone and in combination with the standard cytotoxic drugs oxaliplatin and 5-fluorouracil (5-FU) in the treatment of colon cancer using three human colon cancer cell lines, namely, HT-29, HCT-116, and HCT8/S11. We demonstrate that Frondoside A, oxaliplatin, and 5-FU cause a concentration- and time-dependent reduction in the number of HT-29 colon cancer cells. A concentration of 2.5 μM of Frondoside A led to almost 100% inhibition of cell numbers at 72 h. A similar effect was only observed with a much higher concentration (100 μM) of oxaliplatin or 5-FU. The reduction in cell numbers by Frondoside A, oxaliplatin, and 5-FU was also confirmed in two other colon cancer cell lines, namely, HCT8/S11 and HCT-116, treated for 48 h. The combinations of low concentrations of these drugs for 48 h in vitro clearly demonstrated that Frondoside A enhances the inhibition of cell numbers induced by oxaliplatin or 5-FU. Similarly, such a combination also efficiently inhibited colony growth in vitro. Interestingly, we found that the inhibition of ERK1/2 phosphorylation was significantly enhanced when Frondoside A was used in combination treatments. Moreover, we show that Frondoside A and 5-FU, when used alone, induce a concentration-dependent induction of apoptosis and that their pro-apoptotic effect is dramatically enhanced when used in combination. We further demonstrate that apoptosis induction upon the treatment of colon cancer cells was at least in part a result of the inhibition of phosphorylation of the survival kinase AKT, leading to caspase-3 activation, poly (ADP-ribose) polymerase (PARP) inactivation, and consequently DNA damage, as suggested by the increase in the level of γH2AX. In light of these findings, we strongly suggest that Frondoside A may have a role in colon cancer therapy when used in combination with the standard cytotoxic drugs oxaliplatin and 5-FU.
AB - Over recent years, we have demonstrated that Frondoside A, a triterpenoid glycoside isolated from an Atlantic sea cucumber, has potent in vitro and in vivo anti-cancer effects against human pancreatic, breast, and lung cancer. We have also demonstrated that Frondoside A is able to potentiate and/or synergize the anti-cancer effects of major classical cytotoxic agents, namely, gemcitabine, paclitaxel, and cisplatin, in the treatment of pancreatic, breast, and lung cancer, respectively. This study evaluates the impact of Frondoside A alone and in combination with the standard cytotoxic drugs oxaliplatin and 5-fluorouracil (5-FU) in the treatment of colon cancer using three human colon cancer cell lines, namely, HT-29, HCT-116, and HCT8/S11. We demonstrate that Frondoside A, oxaliplatin, and 5-FU cause a concentration- and time-dependent reduction in the number of HT-29 colon cancer cells. A concentration of 2.5 μM of Frondoside A led to almost 100% inhibition of cell numbers at 72 h. A similar effect was only observed with a much higher concentration (100 μM) of oxaliplatin or 5-FU. The reduction in cell numbers by Frondoside A, oxaliplatin, and 5-FU was also confirmed in two other colon cancer cell lines, namely, HCT8/S11 and HCT-116, treated for 48 h. The combinations of low concentrations of these drugs for 48 h in vitro clearly demonstrated that Frondoside A enhances the inhibition of cell numbers induced by oxaliplatin or 5-FU. Similarly, such a combination also efficiently inhibited colony growth in vitro. Interestingly, we found that the inhibition of ERK1/2 phosphorylation was significantly enhanced when Frondoside A was used in combination treatments. Moreover, we show that Frondoside A and 5-FU, when used alone, induce a concentration-dependent induction of apoptosis and that their pro-apoptotic effect is dramatically enhanced when used in combination. We further demonstrate that apoptosis induction upon the treatment of colon cancer cells was at least in part a result of the inhibition of phosphorylation of the survival kinase AKT, leading to caspase-3 activation, poly (ADP-ribose) polymerase (PARP) inactivation, and consequently DNA damage, as suggested by the increase in the level of γH2AX. In light of these findings, we strongly suggest that Frondoside A may have a role in colon cancer therapy when used in combination with the standard cytotoxic drugs oxaliplatin and 5-FU.
KW - 5-fluorouracil
KW - Apoptosis
KW - Cell proliferation
KW - Colon cancer
KW - Frondoside A
KW - Oxaliplatin
UR - http://www.scopus.com/inward/record.url?scp=85046652645&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85046652645&partnerID=8YFLogxK
U2 - 10.3390/nu10050560
DO - 10.3390/nu10050560
M3 - Article
C2 - 29724012
AN - SCOPUS:85046652645
SN - 2072-6643
VL - 10
JO - Nutrients
JF - Nutrients
IS - 5
M1 - 560
ER -