Fully Convolutional DenseNets for Segmentation of Microvessels in Two-photon Microscopy∗

Rafat Damseh, Farida Cheriet, Frederic Lesage

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Citations (Scopus)

Abstract

Segmentation of microvessels measured using two-photon microscopy has been studied in the literature with limited success due to uneven intensities associated with optical imaging and shadowing effects. In this work, we address this problem using a customized version of a recently developed fully convolutional neural network, namely, FC-DensNets. To train and validate the network, manual annotations of 8 angiograms from two-photon microscopy was used. Segmentation results are then compared with that of a state-of-the-art scheme that was developed for the same purpose and also based on deep learning. Experimental results show improved performance of used FC-DenseNet in providing accurate and yet end-to-end segmentation of microvessels in two-photon microscopy.

Original languageEnglish
Title of host publication40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages661-665
Number of pages5
ISBN (Electronic)9781538636466
DOIs
Publication statusPublished - Oct 26 2018
Externally publishedYes
Event40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018 - Honolulu, United States
Duration: Jul 18 2018Jul 21 2018

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Volume2018-July
ISSN (Print)1557-170X

Conference

Conference40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018
Country/TerritoryUnited States
CityHonolulu
Period7/18/187/21/18

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Fully Convolutional DenseNets for Segmentation of Microvessels in Two-photon Microscopy∗'. Together they form a unique fingerprint.

Cite this