TY - JOUR
T1 - Gene expression profiling in the Cynomolgus macaque Macaca fascicularis shows variation within the normal birth range
AU - Emerald, Bright S.
AU - Chng, Keefe
AU - Masuda, Shinya
AU - Sloboda, Deborah M.
AU - Vickers, Mark H.
AU - Kambadur, Ravi
AU - Gluckman, Peter D.
N1 - Funding Information:
BSE, RK, PDG, KC, SM are supported by Agency for Science, Technology and research (Singapore). PDG, DMS, MHV are funded by the National Research Centre for Growth and Development, University of Auckland (New Zealand).
PY - 2011/10/16
Y1 - 2011/10/16
N2 - Background: Although an adverse early-life environment has been linked to an increased risk of developing the metabolic syndrome, the molecular mechanisms underlying altered disease susceptibility as well as their relevance to humans are largely unknown. Importantly, emerging evidence suggests that these effects operate within the normal range of birth weights and involve mechanisms of developmental palsticity rather than pathology.Method: To explore this further, we utilised a non-human primate model Macaca fascicularis (Cynomolgus macaque) which shares with humans the same progressive history of the metabolic syndrome. Using microarray we compared tissues from neonates in the average birth weight (50-75th centile) to those of lower birth weight (5-25th centile) and studied the effect of different growth trajectories within the normal range on gene expression levels in the umbilical cord, neonatal liver and skeletal muscle.Results: We identified 1973 genes which were differentially expressed in the three tissue types between average and low birth weight animals (P < 0.05). Gene ontology analysis identified that these genes were involved in metabolic processes including cellular lipid metabolism, cellular biosynthesis, cellular macromolecule synthesis, cellular nitrogen metabolism, cellular carbohydrate metabolism, cellular catabolism, nucleotide and nucleic acid metabolism, regulation of molecular functions, biological adhesion and development.Conclusion: These differences in gene expression levels between animals in the upper and lower percentiles of the normal birth weight range may point towards early life metabolic adaptations that in later life result in differences in disease risk.
AB - Background: Although an adverse early-life environment has been linked to an increased risk of developing the metabolic syndrome, the molecular mechanisms underlying altered disease susceptibility as well as their relevance to humans are largely unknown. Importantly, emerging evidence suggests that these effects operate within the normal range of birth weights and involve mechanisms of developmental palsticity rather than pathology.Method: To explore this further, we utilised a non-human primate model Macaca fascicularis (Cynomolgus macaque) which shares with humans the same progressive history of the metabolic syndrome. Using microarray we compared tissues from neonates in the average birth weight (50-75th centile) to those of lower birth weight (5-25th centile) and studied the effect of different growth trajectories within the normal range on gene expression levels in the umbilical cord, neonatal liver and skeletal muscle.Results: We identified 1973 genes which were differentially expressed in the three tissue types between average and low birth weight animals (P < 0.05). Gene ontology analysis identified that these genes were involved in metabolic processes including cellular lipid metabolism, cellular biosynthesis, cellular macromolecule synthesis, cellular nitrogen metabolism, cellular carbohydrate metabolism, cellular catabolism, nucleotide and nucleic acid metabolism, regulation of molecular functions, biological adhesion and development.Conclusion: These differences in gene expression levels between animals in the upper and lower percentiles of the normal birth weight range may point towards early life metabolic adaptations that in later life result in differences in disease risk.
UR - http://www.scopus.com/inward/record.url?scp=80555150551&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80555150551&partnerID=8YFLogxK
U2 - 10.1186/1471-2164-12-509
DO - 10.1186/1471-2164-12-509
M3 - Article
C2 - 21999700
AN - SCOPUS:80555150551
SN - 1471-2164
VL - 12
JO - BMC Genomics
JF - BMC Genomics
M1 - 509
ER -