## Abstract

Gravitational Search Algorithm (GSA) is a metaheuristic population-based optimization algorithm inspired by the Newtonian law of gravity and law of motion. Ever since it was introduced in 2009, GSA has been employed to solve various optimization problems. Despite its superior performance, GSA has a fundamental problem. It has been revealed that the force calculation in GSA is not genuinely based on the Newtonian law of gravity. Based on the Newtonian law of gravity, force between two masses in the universe is inversely proportional to the square of the distance between them. However, in the original GSA, R is used instead of R^{2}. In this paper, the performance of GSA is re-evaluated considering the square of the distance between masses, R^{2}. The CEC2014 benchmark functions for real-parameter single objective optimization problems are employed in the evaluation. An important finding is that by considering the square of the distance between masses, R^{2}, significant improvement over the original GSA is observed provided a large gravitational constant should be used at the beginning of the optimization process.

Original language | English |
---|---|

Pages (from-to) | 4904-4910 |

Number of pages | 7 |

Journal | ARPN Journal of Engineering and Applied Sciences |

Volume | 11 |

Issue number | 7 |

Publication status | Published - Apr 1 2016 |

Externally published | Yes |

## Keywords

- Gravitational search algorithm
- Law of motion
- Newtonian law of gravity

## ASJC Scopus subject areas

- General Engineering

## Fingerprint

Dive into the research topics of 'Gravitational search algorithm: R is better than R^{2}?'. Together they form a unique fingerprint.