Groundwater level forecasting using ensemble coactive neuro-fuzzy inference system

Kenneth Beng Wee Boo, Ahmed El-Shafie, Faridah Othman, Mohsen Sherif, Ali Najah Ahmed

Research output: Contribution to journalArticlepeer-review

Abstract

A modeling framework utilizing the coactive neuro-fuzzy inference system (CANFIS) has been developed for multi-lead time groundwater level (GWL) forecasting in four different wells located in Texas and Florida, USA. Various model input combinations, including GWL, precipitation, temperature, and surface water level variables, have been derived based on proposed correlation analysis using singular spectrum analysis (SSA) remainders. The models have been trained on data subsets of varying lengths to identify the optimal training data duration. Additionally, we have introduced the bagging ensemble learning method to enhance the performance of the CANFIS model. As part of a comprehensive model evaluation process, the best-performing CANFIS model for each forecasting scenario has undergone uncertainty analysis using bootstrap sampling. Our results reveal that the CANFIS model performs satisfactorily for daily forecasting but leaves room for improvement in monthly forecasting, particularly for two-month and three-month ahead forecasts. Moreover, we have identified several optimal input combinations, highlighting the significance of the temperature variable in monthly forecasting. Furthermore, our findings indicate that additional training data does not necessarily lead to improved performance. The ensemble CANFIS model has demonstrated significant performance enhancement, particularly for monthly forecasting. Finally, the CANFIS model uncertainty analysis has shown satisfactory results for daily forecasting scenarios, while monthly forecasting models exhibit higher uncertainties, particularly during periods with distinctly different GWL fluctuation patterns.

Original languageEnglish
Article number168760
JournalScience of the Total Environment
Volume912
DOIs
Publication statusPublished - Feb 20 2024

Keywords

  • ANFIS
  • Artificial intelligence
  • Bootstrap aggregating (bagging)
  • Machine learning
  • Uncertainty analysis
  • Water table modeling

ASJC Scopus subject areas

  • Environmental Engineering
  • Environmental Chemistry
  • Waste Management and Disposal
  • Pollution

Fingerprint

Dive into the research topics of 'Groundwater level forecasting using ensemble coactive neuro-fuzzy inference system'. Together they form a unique fingerprint.

Cite this