Guidelines for Fabricating Highly Efficient Perovskite Solar Cells with Cu2O as the Hole Transport Material

Sajid Sajid, Salem Alzahmi, Imen Ben Salem, Ihab M. Obaidat

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Organic hole transport materials (HTMs) have been frequently used to achieve high power conversion efficiencies (PCEs) in regular perovskite solar cells (PSCs). However, organic HTMs or their ingredients are costly and time-consuming to manufacture. Therefore, one of the hottest research topics in this area has been the quest for an efficient and economical inorganic HTM in PSCs. To promote efficient charge extraction and, hence, improve overall efficiency, it is crucial to look into the desirable properties of inorganic HTMs. In this context, a simulation investigation using a solar cell capacitance simulator (SCAPS) was carried out on the performance of regular PSCs using inorganic HTMs. Several inorganic HTMs, such as nickel oxide (NiO), cuprous oxide (Cu2O), copper iodide (CuI), and cuprous thiocyanate (CuSCN), were incorporated in PSCs to explore matching HTMs that could add to the improvement in PCE. The simulation results revealed that Cu2O stood out as the best alternative, with electron affinity, hole mobility, and acceptor density around 3.2 eV, 60 cm2V−1s−1, and 1018 cm−3, respectively. Additionally, the results showed that a back electrode with high work-function was required to establish a reduced barrier Ohmic and Schottky contact, which resulted in efficient charge collection. In the simulation findings, Cu2O-based PSCs with an efficiency of more than 25% under optimal conditions were identified as the best alternative for other counterparts. This research offers guidelines for constructing highly efficient PSCs with inorganic HTMs.

Original languageEnglish
Article number3315
JournalNanomaterials
Volume12
Issue number19
DOIs
Publication statusPublished - Oct 2022

Keywords

  • inorganic charge-transporting layer
  • numerical simulation
  • performance optimization
  • perovskite solar cell

ASJC Scopus subject areas

  • General Chemical Engineering
  • General Materials Science

Fingerprint

Dive into the research topics of 'Guidelines for Fabricating Highly Efficient Perovskite Solar Cells with Cu2O as the Hole Transport Material'. Together they form a unique fingerprint.

Cite this