TY - JOUR
T1 - Hankel and Symmetric Toeplitz Determinants for a New Subclass of q-Starlike Functions
AU - Al-shbeil, Isra
AU - Gong, Jianhua
AU - Khan, Shahid
AU - Khan, Nazar
AU - Khan, Ajmal
AU - Khan, Mohammad Faisal
AU - Goswami, Anjali
N1 - Funding Information:
This research was funded by the UAE University (No. UPAR 31S315).
Publisher Copyright:
© 2022 by the authors.
PY - 2022/11
Y1 - 2022/11
N2 - This paper considers the basic concepts of q-calculus and the principle of subordination. We define a new subclass of q-starlike functions related to the Salagean q-differential operator. For this class, we investigate initial coefficient estimates, Hankel determinants, Toeplitz matrices, and Fekete-Szegö problem. Moreover, we consider the q-Bernardi integral operator to discuss some applications in the form of some results.
AB - This paper considers the basic concepts of q-calculus and the principle of subordination. We define a new subclass of q-starlike functions related to the Salagean q-differential operator. For this class, we investigate initial coefficient estimates, Hankel determinants, Toeplitz matrices, and Fekete-Szegö problem. Moreover, we consider the q-Bernardi integral operator to discuss some applications in the form of some results.
KW - analytic functions
KW - Hankel determinants
KW - q-derivative operator
KW - q-starlike functions
KW - quantum calculus
KW - salagean q-differential operator
KW - Toeplitz matrices
UR - http://www.scopus.com/inward/record.url?scp=85148905014&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85148905014&partnerID=8YFLogxK
U2 - 10.3390/fractalfract6110658
DO - 10.3390/fractalfract6110658
M3 - Article
AN - SCOPUS:85148905014
SN - 2504-3110
VL - 6
JO - Fractal and Fractional
JF - Fractal and Fractional
IS - 11
M1 - 658
ER -