Heat Sink Employing Straight Microchannels with Sidewall Ribs in Staggered Arrangement for Liquid Based Cooling of Microelectronic Chips

Ahmed Thaher, Bobby Mathew

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

This article conceptualizes a single-phase microchannel heat sink for thermal management of microelectronic chips and details the model-based parametric study carried out on the heat sink. The heat sink consists of multiple straight microchannels with sidewall ribs in staggered configuration. The mathematical model consists of continuity equation, Navier-Stokes equations and energy equations. Fluent module of Ansys Workbench is used for solving the model. The performance of the device is quantified in terms two metrics such as thermal resistance and pressure drop. Studies are done for Reynolds number ranging from 250 to 1000. It is observed that irrespective of the geometric parameters of the heat sink, increase in Reynolds number decreases and increases the thermal resistance and pressure drop power, respectively. Decrease in the pitch of the sidewall ribs, for a specific Reynolds number, decreases and increases the thermal resistance and pressure drop, respectively. For a specific Reynolds number, increase in dimensions of the sidewall ribs lead to decrease and increase in the thermal resistance and pressure drop, respectively. At low Reynolds number, decrease in hydraulic diameter of the microchannel reduces the thermal resistance while at high Reynolds number, decrease in hydraulic diameter of the microchannel increases the thermal resistance; pressure drop increases with decrease in hydraulic diameter for a specific Reynolds number.

Original languageEnglish
Title of host publication2021 IEEE 23rd Electronics Packaging Technology Conference, EPTC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages519-523
Number of pages5
ISBN (Electronic)9781665416191
DOIs
Publication statusPublished - 2021
Event23rd IEEE Electronics Packaging Technology Conference, EPTC 2021 - Virtual, Online, Singapore
Duration: Dec 1 2021Dec 30 2021

Publication series

Name2021 IEEE 23rd Electronics Packaging Technology Conference, EPTC 2021

Conference

Conference23rd IEEE Electronics Packaging Technology Conference, EPTC 2021
Country/TerritorySingapore
CityVirtual, Online
Period12/1/2112/30/21

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Safety, Risk, Reliability and Quality
  • Electronic, Optical and Magnetic Materials
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Heat Sink Employing Straight Microchannels with Sidewall Ribs in Staggered Arrangement for Liquid Based Cooling of Microelectronic Chips'. Together they form a unique fingerprint.

Cite this