Honeypot back-propagation for mitigating spoofing distributed denial-of-service attacks

Sherif Khattab, Rami Melhem, Daniel Mossé, Taieb Znati

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Citations (Scopus)

Abstract

The Denial-of-Service (DoS) attack remains a challenging problem in the current Internet. In a DoS defense, mechanism, a honeypot acts as a decoy within a pool of servers, whereby any packet received by the honeypot is most likely an attack packet. We have previously proposed the roaming honeypots scheme to enhance this mechanism by camouflaging the honeypots within the server pool, thereby making their locations highly unpredictable. In roaming honeypots, each server acts as a honeypot for some periods of time, or honeypot epochs, the duration of which is determined by a pseudo-random schedule shared among servers and legitimate clients. In this paper, we propose a honeypot backpropagation scheme to trace back attack sources when attacks occur. Based on this scheme, the reception of a packet by a roaming honeypot triggers the activation of a DAG of honeypot sessions rooted at the honeypot under attack towards attack sources. The formation of this tree is achieved in a hierarchical fashion: first at the Autonomous system (AS) level and then at the router level within an AS if needed. The proposed scheme supports incremental deployment and provides deployment incentives for ISPs. Through ns-2 simulations, we show how the proposed scheme enhances the performance of a vanilla Pushback defense by obtaining accurate attack signatures and acting promptly once an attack is detected.

Original languageEnglish
Title of host publication20th International Parallel and Distributed Processing Symposium, IPDPS 2006
PublisherIEEE Computer Society
ISBN (Print)1424400546, 9781424400546
DOIs
Publication statusPublished - 2006
Externally publishedYes
Event20th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2006 - Rhodes Island, Greece
Duration: Apr 25 2006Apr 29 2006

Publication series

Name20th International Parallel and Distributed Processing Symposium, IPDPS 2006
Volume2006

Conference

Conference20th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2006
Country/TerritoryGreece
CityRhodes Island
Period4/25/064/29/06

ASJC Scopus subject areas

  • Engineering(all)

Fingerprint

Dive into the research topics of 'Honeypot back-propagation for mitigating spoofing distributed denial-of-service attacks'. Together they form a unique fingerprint.

Cite this