Identification of CANT1 Mutations in Desbuquois Dysplasia

Céline Huber, Bénédicte Oulès, Marta Bertoli, Mounia Chami, Mélanie Fradin, Yasemin Alanay, Lihadh I. Al-Gazali, Margreet G.E.M. Ausems, Pierre Bitoun, Denise P. Cavalcanti, Alexander Krebs, Martine Le Merrer, Geert Mortier, Yousef Shafeghati, Andrea Superti-Furga, Stephen P. Robertson, Carine Le Goff, Andrea Onetti Muda, Patrizia Paterlini-Bréchot, Arnold MunnichValérie Cormier-Daire

Research output: Contribution to journalArticlepeer-review

73 Citations (Scopus)


Desbuquois dysplasia is a severe condition characterized by short stature, joint laxity, scoliosis, and advanced carpal ossification with a delta phalanx. Studying nine Desbuquois families, we identified seven distinct mutations in the Calcium-Activated Nucleotidase 1 gene (CANT1), which encodes a soluble UDP-preferring nucleotidase belonging to the apyrase family. Among the seven mutations, four were nonsense mutations (Del 5′ UTR and exon 1, p.P245RfsX3, p.S303AfsX20, and p.W125X), and three were missense mutations (p.R300C, p.R300H, and p.P299L) responsible for the change of conserved amino acids located in the seventh nucleotidase conserved region (NRC). The arginine substitution at position 300 was identified in five out of nine families. The specific function of CANT1 is as yet unknown, but its substrates are involved in several major signaling functions, including Ca2+ release, through activation of pyrimidinergic signaling. Importantly, using RT-PCR analysis, we observed a specific expression in chondrocytes. We also found electron-dense material within distended rough endoplasmic reticulum in the fibroblasts of Desbuquois patients. Our findings demonstrate the specific involvement of a nucleotidase in the endochondral ossification process.

Original languageEnglish
Pages (from-to)706-710
Number of pages5
JournalAmerican Journal of Human Genetics
Issue number5
Publication statusPublished - Nov 13 2009

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)


Dive into the research topics of 'Identification of CANT1 Mutations in Desbuquois Dysplasia'. Together they form a unique fingerprint.

Cite this