Identification of gene knockout strategies using a hybrid of an ant colony optimization algorithm and flux balance analysis to optimize microbial strains

Shi Jing Lu, Abdul Hakim Mohamed Salleh, Mohd Saberi Mohamad, Safaai Deris, Sigeru Omatu, Michifumi Yoshioka

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Reconstructions of genome-scale metabolic networks from different organisms have become popular in recent years. Metabolic engineering can simulate the reconstruction process to obtain desirable phenotypes. In previous studies, optimization algorithms have been implemented to identify the near-optimal sets of knockout genes for improving metabolite production. However, previous works contained premature convergence and the stop criteria were not clear for each case. Therefore, this study proposes an algorithm that is a hybrid of the ant colony optimization algorithm and flux balance analysis (ACOFBA) to predict near optimal sets of gene knockouts in an effort to maximize growth rates and the production of certain metabolites. Here, we present a case study that uses Baker's yeast, also known as Saccharomyces cerevisiae, as the model organism and target the rate of vanillin production for optimization. The results of this study are the growth rate of the model organism after gene deletion and a list of knockout genes. The ACOFBA algorithm was found to improve the yield of vanillin in terms of growth rate and production compared with the previous algorithms.

Original languageEnglish
Pages (from-to)175-183
Number of pages9
JournalComputational Biology and Chemistry
Volume53
Issue numberPB
DOIs
Publication statusPublished - Dec 2014
Externally publishedYes

Keywords

  • Ant colony optimization algorithm
  • Flux balance analysis
  • Gene knockout strategy
  • Metabolic engineering
  • Microbial strains
  • Optimization algorithm

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Organic Chemistry
  • Computational Mathematics

Fingerprint

Dive into the research topics of 'Identification of gene knockout strategies using a hybrid of an ant colony optimization algorithm and flux balance analysis to optimize microbial strains'. Together they form a unique fingerprint.

Cite this