Imbibition oil recovery from tight reservoir cores using microemulsion: Experiment and simulation

Qinzhi Li, Yiwen Wang, Bing Wei, Lele Wang, Jun Lu, Jinyu Tang

Research output: Contribution to journalArticlepeer-review

Abstract

Despite the promising results obtained from the utilization of interfacial-active additives in enhancing imbibition-based oil recovery from tight reservoirs, the predominant mechanisms governing this process remain inadequately understood. In this work, a meticulously designed workflow is implemented to conduct experiments and modeling focusing on imbibition tests performed on tight sandstone cores while utilizing surfactant and microemulsion. Our primary objective is to investigate the response of oil recovery to these additives and to develop a robust and reliable model that incorporates the intricate interactions, thereby elucidating the underlying mechanisms. Two imbibition fluids are designed, namely, surfactant and microemulsion. A comprehensive investigation is performed to analyze the physicochemical properties of these fluids, encompassing phase behavior, density, viscosity, and wettability alteration, with the aim of establishing fundamental knowledge in the field. Three imbibition tests are carried out to observe the response of oil production and optimize the experimental methodology. A numerical model is developed that fully couples the evolution of relative permeability and capillary pressure with the dynamic processes of emulsification, solubilization and molecular diffusion. The results demonstrate the crucial role of emulsification/solubilization in the imbibition process.

Original languageEnglish
Pages (from-to)38-47
Number of pages10
JournalCapillarity
Volume10
Issue number2
DOIs
Publication statusPublished - Feb 2024

Keywords

  • Imbibition
  • microemulsion
  • numerical simulation
  • tight reservoir

ASJC Scopus subject areas

  • Surfaces and Interfaces

Fingerprint

Dive into the research topics of 'Imbibition oil recovery from tight reservoir cores using microemulsion: Experiment and simulation'. Together they form a unique fingerprint.

Cite this