Influence of DC magnetron sputtering reaction gas on structural and optical characteristics of Ce-oxide thin films

Hussein A. Miran, Zhong Tao Jiang, Mohammednoor Altarawneh, Jean Pierre Veder, Zhi feng Zhou, M. Mahbubur Rahman, Zainab N. Jaf, Bogdan Z. Dlugogorski

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)


The influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.1 eV) were derived from the UV–Vis reflectance. A significant change in the band gap was observed as oxygen/argon flow ratio was raised from 7% to 14% and this finding is consistent with the high-resolution XPS analysis of Ce 3d that reports a mixture of Ce2O3 and CeO2 in the films. Density functional theory (DFT+U) implemented in the Cambridge Serial Total Energy Package (CASTEP) was carried out to simulate the optical constants of CeO2 clusters at ground state. The computed electronic density of states (DOSs) of the optimized unit cell of CeO2 yields a band gap that agrees well with the experimentally measured optical band gap. The simulated and measured absorption coefficient (α) exhibited a similar trend and, to some extent, have similar values in the wavelength range from 100 to 2500 nm. The combined results of this study demonstrate good correlation between the theoretical and experimental findings.

Original languageEnglish
Pages (from-to)16450-16458
Number of pages9
JournalCeramics International
Issue number14
Publication statusPublished - Oct 1 2018
Externally publishedYes


  • Cerium oxide
  • DFT
  • Optical parameters
  • X-ray photoelectron spectroscopy

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Process Chemistry and Technology
  • Surfaces, Coatings and Films
  • Materials Chemistry


Dive into the research topics of 'Influence of DC magnetron sputtering reaction gas on structural and optical characteristics of Ce-oxide thin films'. Together they form a unique fingerprint.

Cite this