TY - JOUR
T1 - Inverse Association between the Existence of CRISPR/Cas Systems with Antibiotic Resistance, Extended Spectrum β-Lactamase and Carbapenemase Production in Multidrug, Extensive Drug and Pandrug-Resistant Klebsiella pneumoniae
AU - Jwair, Noor A.
AU - Al-Ouqaili, Mushtak T.S.
AU - Al-Marzooq, Farah
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/6
Y1 - 2023/6
N2 - Antimicrobial resistance, with the production of extended-spectrum β-lactamases (ESBL) and carbapenemases, is common in the opportunistic pathogen, Klebsiella pneumoniae. This organism has a genome that can contain clustered regularly interspaced short palindromic repeats (CRISPRs), which operate as a defense mechanism against external invaders such as plasmids and viruses. This study aims to determine the association of the CRISPR/Cas systems with antibiotic resistance in K. pneumoniae isolates from Iraqi patients. A total of 100 K. pneumoniae isolates were collected and characterized according to their susceptibility to different antimicrobial agents. The CRISPR/Cas systems were detected via PCR. The phenotypic detection of ESBLs and carbapenemases was performed. The production of ESBL was detected in 71% of the isolates. Carbapenem-resistance was detected in 15% of the isolates, while only 14% were susceptible to all antimicrobial agents. Furthermore, the bacteria were classified into multidrug (77%), extensively drug-resistant (11.0%) and pandrug-resistant (4.0%). There was an inverse association between the presence of the CRISPR/Cas systems and antibiotic resistance, as resistance was higher in the absence of the CRISPR/Cas system. Multidrug resistance in ESBL-producing and carbapenem-resistant K. pneumoniae occurred more frequently in strains negative for the CRISPR/Cas system. Thus, we conclude that genes for exogenous antibiotic resistance can be acquired in the absence of the CRISPR/Cas modules that can protect the bacteria against acquiring foreign DNA.
AB - Antimicrobial resistance, with the production of extended-spectrum β-lactamases (ESBL) and carbapenemases, is common in the opportunistic pathogen, Klebsiella pneumoniae. This organism has a genome that can contain clustered regularly interspaced short palindromic repeats (CRISPRs), which operate as a defense mechanism against external invaders such as plasmids and viruses. This study aims to determine the association of the CRISPR/Cas systems with antibiotic resistance in K. pneumoniae isolates from Iraqi patients. A total of 100 K. pneumoniae isolates were collected and characterized according to their susceptibility to different antimicrobial agents. The CRISPR/Cas systems were detected via PCR. The phenotypic detection of ESBLs and carbapenemases was performed. The production of ESBL was detected in 71% of the isolates. Carbapenem-resistance was detected in 15% of the isolates, while only 14% were susceptible to all antimicrobial agents. Furthermore, the bacteria were classified into multidrug (77%), extensively drug-resistant (11.0%) and pandrug-resistant (4.0%). There was an inverse association between the presence of the CRISPR/Cas systems and antibiotic resistance, as resistance was higher in the absence of the CRISPR/Cas system. Multidrug resistance in ESBL-producing and carbapenem-resistant K. pneumoniae occurred more frequently in strains negative for the CRISPR/Cas system. Thus, we conclude that genes for exogenous antibiotic resistance can be acquired in the absence of the CRISPR/Cas modules that can protect the bacteria against acquiring foreign DNA.
KW - antibiotic resistance
KW - carbapenemases
KW - CRISPR/Cas
KW - extended-spectrum β-lactamases
KW - K. pneumoniae
UR - http://www.scopus.com/inward/record.url?scp=85163778958&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85163778958&partnerID=8YFLogxK
U2 - 10.3390/antibiotics12060980
DO - 10.3390/antibiotics12060980
M3 - Article
AN - SCOPUS:85163778958
SN - 2079-6382
VL - 12
JO - Antibiotics
JF - Antibiotics
IS - 6
M1 - 980
ER -