Abstract
Transport of charge carriers in percolating nanocluster devices based on bimetallic PdCu nanoclusters was investigated in this work. The device was fabricated by self-assembly of the nanoclusters between electrical electrodes inside an ultra-high vacuum compatible system. The average size of the produced nanoclusters was 7.3 nm, and the composition was Pd0.77Cu 0.23. Systematic in situ current-voltage measurements as a function of temperature were performed which provide a conductance-temperature profile. The results are explained in terms of the charge carriers' tunneling through small potential barriers at the junctions between nanoclusters. The results predict the size of the nanoclusters as well as the magnitude of the potential difference of the tunneling barriers. This investigation helps understanding the nature of the interface between the nanoclusters and the charge carrier transport within those devices to be utilized for optimizing gas sensing properties of PdCu nanocluster devices.
Original language | English |
---|---|
Pages (from-to) | 156-160 |
Number of pages | 5 |
Journal | Acta Metallurgica Sinica (English Letters) |
Volume | 27 |
Issue number | 1 |
DOIs | |
Publication status | Published - Feb 2014 |
Keywords
- Bimetallic nanoclusters
- Charge transport
- Inert-gas condensation
- Nanocluster devices
- PdCu
- Tunneling
ASJC Scopus subject areas
- Metals and Alloys
- Industrial and Manufacturing Engineering