TY - JOUR
T1 - Investigation of cyclooxygenase and signaling pathways involved in human platelet aggregation mediated by synergistic interaction of various agonists
AU - Khan, Nadia
AU - Farooq, Ahsana Dar
AU - Sadek, Bassem
N1 - Publisher Copyright:
© 2015 Khan et al.
PY - 2015/7/6
Y1 - 2015/7/6
N2 - In the present study, the mechanism(s) of synergistic interaction of various platelet mediators such as arachidonic acid (AA) when combined with 5-hydroxytryptamine (5-HT) or adenosine diphosphate (ADP) on human platelet aggregation were examined. The results demonstrated that 5-HT had no or negligible effect on aggregation but it did potentiate the aggregation response of AA. Similarly, the combination of subeffective concentrations of ADP and AA exhibited noticeable rise in platelet aggregation. Moreover, the observed synergistic effect of AA with 5-HT on platelets was inhibited by different cyclooxygenase (COX) inhibitors, namely ibuprofen and celecoxib, with half maximal inhibitory effect (IC50) values of 18.0±1.8 and 15.6±3.4 μmol/L, respectively. Interestingly, the synergistic effect observed for AA with 5-HT was, also, blocked by the 5-HT receptor blockers cyproheptadine (IC50=22.0±7 μmol/L), ketanserin (IC50=152±23 μmol/L), phospholipase C (PLC) inhibitor (U73122; IC50=6.1±0.8 μmol/L), and mitogen activated protein kinase (MAPK) inhibitor (PD98059; IC50=3.8±0.5 μmol/L). Likewise, the synergism of AA and ADP was, also, attenuated by COX inhibitors (ibuprofen; IC50=20±4 μmol/L and celecoxib; IC50=24±7 μmol/L), PLC inhibitor (U73122; IC50=3.7±0.3 μmol/L), and MAPK inhibitor (PD98059; IC50=2.8±1.1 μmol/L). Our observed data demonstrate that the combination of subthreshold concentrations of agonists amplifies platelet aggregation and that these synergistic effects largely depend on activation of COX/thromboxane A2, receptor-operated Ca2+ channels, Gq/PLC, and MAPK signaling pathways. Moreover, our data revealed that inhibition of COX pathways by using both selective and/or non-selective COX inhibitors blocks not only AA metabolism and thromboxane A2 formation, but also its binding to Gq receptors and activation of receptor-operated Ca2+ channels in platelets. Overall, our results show that PLC and MAPK inhibitors proved to inhibit the synergistic activation of platelets by several/multiple agonists.
AB - In the present study, the mechanism(s) of synergistic interaction of various platelet mediators such as arachidonic acid (AA) when combined with 5-hydroxytryptamine (5-HT) or adenosine diphosphate (ADP) on human platelet aggregation were examined. The results demonstrated that 5-HT had no or negligible effect on aggregation but it did potentiate the aggregation response of AA. Similarly, the combination of subeffective concentrations of ADP and AA exhibited noticeable rise in platelet aggregation. Moreover, the observed synergistic effect of AA with 5-HT on platelets was inhibited by different cyclooxygenase (COX) inhibitors, namely ibuprofen and celecoxib, with half maximal inhibitory effect (IC50) values of 18.0±1.8 and 15.6±3.4 μmol/L, respectively. Interestingly, the synergistic effect observed for AA with 5-HT was, also, blocked by the 5-HT receptor blockers cyproheptadine (IC50=22.0±7 μmol/L), ketanserin (IC50=152±23 μmol/L), phospholipase C (PLC) inhibitor (U73122; IC50=6.1±0.8 μmol/L), and mitogen activated protein kinase (MAPK) inhibitor (PD98059; IC50=3.8±0.5 μmol/L). Likewise, the synergism of AA and ADP was, also, attenuated by COX inhibitors (ibuprofen; IC50=20±4 μmol/L and celecoxib; IC50=24±7 μmol/L), PLC inhibitor (U73122; IC50=3.7±0.3 μmol/L), and MAPK inhibitor (PD98059; IC50=2.8±1.1 μmol/L). Our observed data demonstrate that the combination of subthreshold concentrations of agonists amplifies platelet aggregation and that these synergistic effects largely depend on activation of COX/thromboxane A2, receptor-operated Ca2+ channels, Gq/PLC, and MAPK signaling pathways. Moreover, our data revealed that inhibition of COX pathways by using both selective and/or non-selective COX inhibitors blocks not only AA metabolism and thromboxane A2 formation, but also its binding to Gq receptors and activation of receptor-operated Ca2+ channels in platelets. Overall, our results show that PLC and MAPK inhibitors proved to inhibit the synergistic activation of platelets by several/multiple agonists.
KW - 5-hydroxytryptophan
KW - Adenosine-5-diphosphate
KW - Arachidonic acid
KW - Cyclooxygenase
KW - Platelet aggregation
KW - Signaling pathway
KW - Synergism
UR - http://www.scopus.com/inward/record.url?scp=84936933216&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84936933216&partnerID=8YFLogxK
U2 - 10.2147/DDDT.S84335
DO - 10.2147/DDDT.S84335
M3 - Article
C2 - 26185418
AN - SCOPUS:84936933216
SN - 1177-8881
VL - 9
SP - 3497
EP - 3509
JO - Drug Design, Development and Therapy
JF - Drug Design, Development and Therapy
ER -