Laboratory Investigation of Hybrid Nanoparticles Injection for Enhanced Oil Recovery Process

Yernur Satay, Muhammad Rehan Hashmet, Peyman Pourafshary

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Nanoparticles due to their unique characteristics are gaining attraction for enhanced oil recovery (EOR) applications. Nanoparticles during the EOR process may activate many mechanisms, particularly wettability alteration, and thus improve the recovery factor. Silica nanoparticle has been largely testified for EOR. The effect of alumina nanoparticles for EOR is also being investigated recently. Their combination may enhance their performance in wettability alteration. In this research, we studied the wettability alteration and recovery performance of the hybrid nanoparticles. A series of experiments were conducted starting from zeta potential and contact angle measurement to determine optimum concentrations of silica, alumina, and hybrid nanoparticles. After dispersing nanoparticles (alone and hybrid), solutions were homogenized using ultrasonic homogenizer. The zeta potential results showed that the silica nanofluid could stay stable for at least 3 days without the need for a stabilizer. However, a stabilizer (SDBS) is required to prepare stable alumina and hybrid nanofluid. Baseline experiments were conducted with the stabilizer to quantify the performance of the stabilizer. Later, contact angles were measured (at room temperature and 80 °C) to analyze the effect of the nanofluid on rock/oil/brine systems and to determine the optimal nanofluid concentration. The results of contact angle experiments prove that, for both temperatures (room and 80 °C), maximum alteration in wettability was shown by the hybrid nanoparticle mixture (0.1wt%silica+0.05wt%Alumina), 29° and 33°, respectively. Finally, coreflooding tests were conducted to study the performance of the optimal nanofluid in enhancing oil r ecovery. The coreflood experiment was conducted with optimum hybrid nanofluid at 80 °C. The recovery factor recorded with Caspian Seawater was 42%, and silica nanofluid improved the recovery to 46%. The injection was followed by a hybrid nanofluid, which increased the recovery factor to 73%. The results presented in this study prove that hybrid nanoparticle injection improves the performance as compared to standalone nanoparticles.

Original languageEnglish
Title of host publicationProceedings of the 8th World Congress on Mechanical, Chemical, and Material Engineering, MCM 2022
EditorsHuihe Qiu, Yuwen Zhang, Marcello Iasiello
PublisherAvestia Publishing
ISBN (Print)9781990800108
DOIs
Publication statusPublished - 2022
Event8th World Congress on Mechanical, Chemical, and Material Engineering, MCM 2022 - Prague, Czech Republic
Duration: Jul 31 2022Aug 2 2022

Publication series

NameProceedings of the World Congress on Mechanical, Chemical, and Material Engineering
ISSN (Electronic)2369-8136

Conference

Conference8th World Congress on Mechanical, Chemical, and Material Engineering, MCM 2022
Country/TerritoryCzech Republic
CityPrague
Period7/31/228/2/22

Keywords

  • Chemical Enhanced Oil Recovery
  • Hybrid Enhanced Oil Recovery
  • Nanoparticle flooding
  • Wettability alteration

ASJC Scopus subject areas

  • Mechanical Engineering
  • Mechanics of Materials
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'Laboratory Investigation of Hybrid Nanoparticles Injection for Enhanced Oil Recovery Process'. Together they form a unique fingerprint.

Cite this