TY - JOUR
T1 - Lactic Acid Bacteria Isolated from Fresh Vegetable Products
T2 - Potential Probiotic and Postbiotic Characteristics Including Immunomodulatory Effects
AU - Alameri, Fatima
AU - Tarique, Mohammad
AU - Osaili, Tareq
AU - Obaid, Riyad
AU - Abdalla, Abdelmoneim
AU - Masad, Razan
AU - Al-Sbiei, Ashraf
AU - Fernandez-Cabezudo, Maria
AU - Liu, Shao Quan
AU - Al-Ramadi, Basel
AU - Ayyash, Mutamed
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/2
Y1 - 2022/2
N2 - The ability to perform effectively in the gastrointestinal tract (GIT) is one of the most significant criteria in the selection of potential probiotic bacteria. Thus, the present study aimed to investigate the potential probiotic characteristics of some selected lactic acid bacteria (LAB) isolated from vegetable products. Probiotic characteristics included tolerance to acid and bile, cholesterol-removing ability, bile salt hydrolysis, resistance against lysozyme and antibiotics, production of exopolysaccharides (EPS), antimicrobial and hemolytic activities, and cell surface characteristics (auto-aggregation, co-aggregation, and hydrophobicity). The survival rate of isolates after G120 ranged from 8.0 to 8.6 Log10 CFU/mL. After the intestinal phase (IN-120), the bacterial count ranged from 7.3 to 8.5 Log10 CFU/mL. The bile tolerance rates ranged from 17.8 to 51.1%, 33.6 to 63.9%, and 55.9 to 72.5% for cholic acid, oxgall, and taurocholic acid, respectively. Isolates F1, F8, F23, and F37 were able to reduce cholesterol (>30%) from the broth. The auto-aggregation average rate increased significantly after 24 h for all isolates, while two isolates showed the highest hydrophobicity values. Moreover, isolates had attachment capabilities comparable to those of HT-29 cells, with an average of 8.03 Log10 CFU/mL after 2 h. All isolates were resistant to lysozyme and vancomycin, and 8 out of the 17 selected isolates displayed an ability to produce exopolysaccharides (EPS). Based on 16S rRNA sequencing, LAB isolates were identified as Enterococcus faecium, E. durans, E. lactis, and Pediococcus acidilactici.
AB - The ability to perform effectively in the gastrointestinal tract (GIT) is one of the most significant criteria in the selection of potential probiotic bacteria. Thus, the present study aimed to investigate the potential probiotic characteristics of some selected lactic acid bacteria (LAB) isolated from vegetable products. Probiotic characteristics included tolerance to acid and bile, cholesterol-removing ability, bile salt hydrolysis, resistance against lysozyme and antibiotics, production of exopolysaccharides (EPS), antimicrobial and hemolytic activities, and cell surface characteristics (auto-aggregation, co-aggregation, and hydrophobicity). The survival rate of isolates after G120 ranged from 8.0 to 8.6 Log10 CFU/mL. After the intestinal phase (IN-120), the bacterial count ranged from 7.3 to 8.5 Log10 CFU/mL. The bile tolerance rates ranged from 17.8 to 51.1%, 33.6 to 63.9%, and 55.9 to 72.5% for cholic acid, oxgall, and taurocholic acid, respectively. Isolates F1, F8, F23, and F37 were able to reduce cholesterol (>30%) from the broth. The auto-aggregation average rate increased significantly after 24 h for all isolates, while two isolates showed the highest hydrophobicity values. Moreover, isolates had attachment capabilities comparable to those of HT-29 cells, with an average of 8.03 Log10 CFU/mL after 2 h. All isolates were resistant to lysozyme and vancomycin, and 8 out of the 17 selected isolates displayed an ability to produce exopolysaccharides (EPS). Based on 16S rRNA sequencing, LAB isolates were identified as Enterococcus faecium, E. durans, E. lactis, and Pediococcus acidilactici.
KW - Antimicrobial
KW - Autoaggregation
KW - Cholesterol-lowering
KW - Immunomodulation
UR - http://www.scopus.com/inward/record.url?scp=85124079036&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85124079036&partnerID=8YFLogxK
U2 - 10.3390/microorganisms10020389
DO - 10.3390/microorganisms10020389
M3 - Article
AN - SCOPUS:85124079036
SN - 2076-2607
VL - 10
JO - Microorganisms
JF - Microorganisms
IS - 2
M1 - 389
ER -