Learning Anchored Unsigned Distance Functions with Gradient Direction Alignment for Single-view Garment Reconstruction

Fang Zhao, Wenhao Wang, Shengcai Liao, Ling Shao

Research output: Chapter in Book/Report/Conference proceedingConference contribution

40 Citations (Scopus)

Abstract

While single-view 3D reconstruction has made significant progress benefiting from deep shape representations in recent years, garment reconstruction is still not solved well due to open surfaces, diverse topologies and complex geometric details. In this paper, we propose a novel learnable Anchored Unsigned Distance Function (AnchorUDF) representation for 3D garment reconstruction from a single image. AnchorUDF represents 3D shapes by predicting unsigned distance fields (UDFs) to enable open garment surface modeling at arbitrary resolution. To capture diverse garment topologies, AnchorUDF not only computes pixel-aligned local image features of query points, but also leverages a set of anchor points located around the surface to enrich 3D position features for query points, which provides stronger 3D space context for the distance function. Furthermore, in order to obtain more accurate point projection direction at inference, we explicitly align the spatial gradient direction of AnchorUDF with the ground-truth direction to the surface during training. Extensive experiments on two public 3D garment datasets, i.e., MGN and Deep Fashion3D, demonstrate that AnchorUDF achieves the state-of-the-art performance on single-view garment reconstruction. Code is available at https://github.com/zhaofang0627/AnchorUDF.

Original languageEnglish
Title of host publicationProceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages12654-12663
Number of pages10
ISBN (Electronic)9781665428125
DOIs
Publication statusPublished - 2021
Externally publishedYes
Event18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, Canada
Duration: Oct 11 2021Oct 17 2021

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/11/2110/17/21

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Learning Anchored Unsigned Distance Functions with Gradient Direction Alignment for Single-view Garment Reconstruction'. Together they form a unique fingerprint.

Cite this