Learning Discriminative Features with Class Encoder

Hailin Shi, Xiangyu Zhu, Zhen Lei, Shengcai Liao, Stan Z. Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Citations (Scopus)

Abstract

Deep neural networks usually benefit from unsupervised pre-training, e.g. auto-encoders. However, the classifier further needs supervised fine-tuning methods for good discrimination. Besides, due to the limits of full-connection, the application of auto-encoders is usually limited to small, well aligned images. In this paper, we incorporate the supervised information to propose a novel formulation, namely class-encoder, whose training objective is to reconstruct a sample from another one of which the labels are identical. Class-encoder aims to minimize the intra-class variations in the feature space, and to learn a good discriminative manifolds on a class scale. We impose the class-encoder as a constraint into the softmax for better supervised training, and extend the reconstruction on feature-level to tackle the parameter size issue and translation issue. The experiments show that the class-encoder helps to improve the performance on benchmarks of classification and face recognition. This could also be a promising direction for fast training of face recognition models.

Original languageEnglish
Title of host publicationProceedings - 29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016
PublisherIEEE Computer Society
Pages1119-1125
Number of pages7
ISBN (Electronic)9781467388504
DOIs
Publication statusPublished - Dec 16 2016
Externally publishedYes
Event29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016 - Las Vegas, United States
Duration: Jun 26 2016Jul 1 2016

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference29th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2016
Country/TerritoryUnited States
CityLas Vegas
Period6/26/167/1/16

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Learning Discriminative Features with Class Encoder'. Together they form a unique fingerprint.

Cite this