Abstract
This study assesses environmental impacts of reverse osmosis and algae-based biodesalination in four scenarios using a life cycle assessment (LCA) approach. These scenarios encompass (1) a multistage conventional pre-treatment desalination system, (2) immobilized algae-based hybrid desalination system, (3) suspended algae pre-treatment hybrid system, and (4) an attached growth algae-based hybrid system with a low-pressure reverse osmosis (LPRO) system. The assessment integrates the ReCiPe and USEtox 2.0 methods, examining diverse phases such as construction, operation, waste treatment, and chemicals. The impact analysis unveils waste treatment as a significant contributor in Scenario 1. In Scenarios 2 and 3, the operational phase, driven by chemical consumption, emerges as a major factor by 60–70 %, causing environmental damage. Scenario 4 showcases superior environmental performance, notably in global warming potential, freshwater eutrophication, marine eutrophication, ozone layer depletion, and fossil resource scarcity. Results highlight that Scenario 2 and Scenario 3, utilizing immobilized and suspended growth biodesalination, do not align with favorable LCA outcomes. Overall, Scenario 4 displays the least environmental impact and a favorable carbon footprint. The study advocates pipeline brine disposal due to its greater convenience and lesser environmental damage. A sensitivity analysis emphasizes the advantages of shorter transportation distances for optimal brine disposal from the desalination plant to the sea.
Original language | English |
---|---|
Article number | 117433 |
Journal | Desalination |
Volume | 578 |
DOIs | |
Publication status | Published - Jun 14 2024 |
Keywords
- Biodesalination
- Life cycle analysis (LCA)
- Microalgae
- Salt reduction
- Seawater desalination
ASJC Scopus subject areas
- General Chemistry
- General Chemical Engineering
- General Materials Science
- Water Science and Technology
- Mechanical Engineering