Abstract
Growing demand for road infrastructures and accompanying environmental footprint calls for the replacement of pavement materials with recycled options. The complexities in real-world usability are dependent upon project-specific characteristics and are affected by budgetary constraints of local governmental agencies, material applicability, and climatical conditions. This study conducts a comprehensive lifecycle cost analysis (LCCA) of an urban highway section “E10” in the hot Middle Eastern climate of Abu Dhabi, where virgin asphalt usage is dominant, using actual cost data under multiple scenarios and recycled construction waste (RCW) usage across aggregate layers and recycled asphalt pavement (RAP) across wearing, binder, and asphalt base courses. Blast furnace slag as partial cement replacement for road concrete works is also analysed. Impacts across all lifecycle stages from initial earthworks and construction to routine maintenance and operation were compared. Results found that cost of sustainable construction is lower. Cost reduction was highest for RAP and RCW usage, particularly when the usage was accumulated. The optimum cost scenario used 25% RCW in the sub-base, 80% RCW in the unbound base, 25% warm-mix asphalt (WMA) RAP in the asphalt base, 15% warm-mix RAP in the binder and wearing courses, and 65% slag for concrete roadworks and resulted in USD 2.6 million (15%) cost reduction over 30 years from 2015 to 2045.
Original language | English |
---|---|
Pages (from-to) | 316-331 |
Number of pages | 16 |
Journal | CivilEng |
Volume | 3 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jun 2022 |
Keywords
- granulated blast furnace slag
- highways
- lifecycle cost analysis
- recycled asphalt pavements
- scenario analyses
ASJC Scopus subject areas
- Civil and Structural Engineering
- Safety, Risk, Reliability and Quality