TY - JOUR
T1 - Maastrichtian Anoxia and Its Influence on Organic Matter and Trace Metal Patterns in the Southern Tethys Realm of Egypt during Greenhouse Variability
AU - Fathy, Douaa
AU - Wagreich, Michael
AU - Fathi, Esraa
AU - Ahmed, Mohamed S.
AU - Leila, Mahmoud
AU - Sami, Mabrouk
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2023/6/6
Y1 - 2023/6/6
N2 - Maastrichtian organic-rich sediments of Egypt were deposited under a warm greenhouse climate along the stable African shelf. This study presents an integrated analysis of the geochemical, mineralogical, and palynological data from Maastrichtian organic-rich sediments in the northwest Red Sea region of Egypt. The aim of the study is to assess the impact of anoxia on the enrichment of organic matter and trace metals and to reconstruct a model for the formation of these sediments. The sediments are hosted within the Duwi and Dakhla formations, covering an interval of ∼1.14-2.39 million years. Our data indicate variable bottom-water oxygen-level conditions for early and late Maastrichtian sediments. The C-S-Fe systematics and redox geochemical proxies (e.g., V/(V + Ni), Ni/Co, and Uauthigenic) suggest dysoxic to anoxic depositional conditions for the late and early Maastrichtian organic-rich sediments, respectively. The early Maastrichtian sediments contain abundant small-sized framboids (average = 4.2-5.5 μm), suggesting anoxic conditions, while the late Maastrichtian sediments have larger framboids (average = 4-7.1 μm), indicating dysoxic conditions. The palynofacies analyses reveal the high abundance of amorphous organic matter and confirm the predominance of anoxic conditions during deposition of these organic-rich sediments. The early Maastrichtian organic-rich sediments have a significant Climate concentration of Mo, V, and U, indicating high biogenic production rates and distinct preservation conditions. Additionally, the data imply that oxygen deficiency conditions and low sedimentation rates were the main factors controlling the preservation of organic matter in the studied sediments. Overall, our study provides insights into the environmental conditions and processes that led to the formation of the Maastrichtian organic-rich sediments in Egypt.
AB - Maastrichtian organic-rich sediments of Egypt were deposited under a warm greenhouse climate along the stable African shelf. This study presents an integrated analysis of the geochemical, mineralogical, and palynological data from Maastrichtian organic-rich sediments in the northwest Red Sea region of Egypt. The aim of the study is to assess the impact of anoxia on the enrichment of organic matter and trace metals and to reconstruct a model for the formation of these sediments. The sediments are hosted within the Duwi and Dakhla formations, covering an interval of ∼1.14-2.39 million years. Our data indicate variable bottom-water oxygen-level conditions for early and late Maastrichtian sediments. The C-S-Fe systematics and redox geochemical proxies (e.g., V/(V + Ni), Ni/Co, and Uauthigenic) suggest dysoxic to anoxic depositional conditions for the late and early Maastrichtian organic-rich sediments, respectively. The early Maastrichtian sediments contain abundant small-sized framboids (average = 4.2-5.5 μm), suggesting anoxic conditions, while the late Maastrichtian sediments have larger framboids (average = 4-7.1 μm), indicating dysoxic conditions. The palynofacies analyses reveal the high abundance of amorphous organic matter and confirm the predominance of anoxic conditions during deposition of these organic-rich sediments. The early Maastrichtian organic-rich sediments have a significant Climate concentration of Mo, V, and U, indicating high biogenic production rates and distinct preservation conditions. Additionally, the data imply that oxygen deficiency conditions and low sedimentation rates were the main factors controlling the preservation of organic matter in the studied sediments. Overall, our study provides insights into the environmental conditions and processes that led to the formation of the Maastrichtian organic-rich sediments in Egypt.
UR - http://www.scopus.com/inward/record.url?scp=85162841762&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85162841762&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c01096
DO - 10.1021/acsomega.3c01096
M3 - Article
AN - SCOPUS:85162841762
SN - 2470-1343
VL - 8
SP - 19603
EP - 19612
JO - ACS Omega
JF - ACS Omega
IS - 22
ER -