Machine Learning and Deep Learning Techniques for Internet of Things Network Anomaly Detection—Current Research Trends

Saida Hafsa Rafique, Amira Abdallah, Nura Shifa Musa, Thangavel Murugan

Research output: Contribution to journalReview articlepeer-review

1 Citation (Scopus)

Abstract

With its exponential growth, the Internet of Things (IoT) has produced unprecedented levels of connectivity and data. Anomaly detection is a security feature that identifies instances in which system behavior deviates from the expected norm, facilitating the prompt identification and resolution of anomalies. When AI and the IoT are combined, anomaly detection becomes more effective, enhancing the reliability, efficacy, and integrity of IoT systems. AI-based anomaly detection systems are capable of identifying a wide range of threats in IoT environments, including brute force, buffer overflow, injection, replay attacks, DDos attack, SQL injection, and back-door exploits. Intelligent Intrusion Detection Systems (IDSs) are imperative in IoT devices, which help detect anomalies or intrusions in a network, as the IoT is increasingly employed in several industries but possesses a large attack surface which presents more entry points for attackers. This study reviews the literature on anomaly detection in IoT infrastructure using machine learning and deep learning. This paper discusses the challenges in detecting intrusions and anomalies in IoT systems, highlighting the increasing number of attacks. It reviews recent work on machine learning and deep-learning anomaly detection schemes for IoT networks, summarizing the available literature. From this survey, it is concluded that further development of current systems is needed by using varied datasets, real-time testing, and making the systems scalable.

Original languageEnglish
Article number1968
JournalSensors
Volume24
Issue number6
DOIs
Publication statusPublished - Mar 2024

Keywords

  • anomaly
  • artificial intelligence
  • deep learning
  • Internet of Things
  • intrusion detection
  • machine learning

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Machine Learning and Deep Learning Techniques for Internet of Things Network Anomaly Detection—Current Research Trends'. Together they form a unique fingerprint.

Cite this