Mechanistic Protective Effect of Cilostazol in Cisplatin-Induced Testicular Damage via Regulation of Oxidative Stress and TNF-α/NF-κB/Caspase-3 Pathways

Eman M. Othman, Heba A. Habib, Mahmoud E. Zahran, Amr Amin, Gehan H. Heeba

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Despite being a potent anticancer drug, cisplatin has limited applicability due to its adverse effects, such as testicular damage. Consequently, reducing its toxicity becomes necessary. In this study, a selective phosphodiesterase-3 inhibitor, cilostazol, which is used to treat intermittent claudication, was examined for its ability to abrogate cisplatin-induced testicular toxicity. Its ameliorative effect was compared to that of two phosphodiesterase inhibitors, tadalafil and pentoxifylline. The study also focused on the possible mechanisms involved in the proposed protective effect. Cisplatin-treated rats showed a significant decrease in sperm number and motility, serum testosterone, and testicular glutathione levels, as well as a significant elevation in malondialdehyde, total nitrite levels, and the protein expression of tumor necrosis factor-alpha, nuclear factor-kappa β, and caspase-3. These outcomes were confirmed by marked testicular architecture deterioration. Contrary to this, cilostazol, in a dose-dependent manner, showed potential protection against testicular toxicity, reversed the disrupted testicular function, and improved histological alterations through rebalancing of oxidative stress, inflammation, and apoptosis. In addition, cilostazol exerted a more pronounced protective effect in comparison to tadalafil and pentoxifylline. In conclusion, cilostazol ameliorates cisplatin-induced testicular impairment through alteration of oxidative stress, inflammation, and apoptotic pathways, offering a promising treatment for cisplatin-induced testicular damage.

Original languageEnglish
Article number12651
JournalInternational journal of molecular sciences
Volume24
Issue number16
DOIs
Publication statusPublished - Aug 2023

Keywords

  • cilostazol
  • cisplatin
  • pentoxifylline
  • tadalafil
  • testicular damage

ASJC Scopus subject areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Mechanistic Protective Effect of Cilostazol in Cisplatin-Induced Testicular Damage via Regulation of Oxidative Stress and TNF-α/NF-κB/Caspase-3 Pathways'. Together they form a unique fingerprint.

Cite this