Microbial nutrient limitation and catalytic adjustments revealed from a long-term nutrient restriction experiment

Amit Kumar, Johanna Pausch

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)


Introduction: Microbial abundance and activities in soils are predominantly determined by soil carbon (C), nitrogen (N) and phosphorus (P) availability. Much research has focused on the effects of soil N than P availability on soil microbial biomass and enzyme activities as sensitive proxies of microbial ecophysiology highlighting the need to investigate how microbes will respond to P availability in soil, especially in cropping systems. Materials and Methods: The effect of P fertilisation on microbial biomass-C, -N and -P, and the kinetic parameters (maximal velocity [Vmax], Michaelis constant [Km] and catalytic efficiency [Ka]) of β-1,4-glucosidase (BG; C-acquiring), leucine-aminopeptidase (LAP; predominantly N-acquiring) and acid phosphomonoesterase (PHO; P-acquiring) were measured in a nutrient-poor agricultural soil (devoid of fertiliser application since 1942). Results: This study showed that P fertilisation led to a 65% and 56% increase in microbial biomass-N and -P, respectively, indicating severe P limitation and inefficient N acquisition by microbes without P availability. Increased Ka values of LAP with P fertilisation further hint toward the production of efficient isoenzymes to avoid resource tradeoffs for nutrient acquisition. Conclusions: Overall, these results decipher microbial metabolic and catalytic adjustments mediated by soil P availability. Increased microbial biomass-N and -P with P fertilisation indicated microbial N and P colimitation that was partly overcome by the production of efficient enzymes for N acquisition with P fertilisation. We argue to incorporate microbial enzyme activities as a response to different management strategies to better inform us about soil biogeochemical cycles in cropping systems.

Original languageEnglish
Pages (from-to)142-148
Number of pages7
JournalJournal of Sustainable Agriculture and Environment
Issue number2
Publication statusPublished - Jun 2022
Externally publishedYes


  • catalytic efficiency
  • enzyme activity
  • kinetic parameters
  • microbial biomass
  • phosphorus fertilisation

ASJC Scopus subject areas

  • Agricultural and Biological Sciences (miscellaneous)
  • Agronomy and Crop Science
  • Plant Science
  • Ecology


Dive into the research topics of 'Microbial nutrient limitation and catalytic adjustments revealed from a long-term nutrient restriction experiment'. Together they form a unique fingerprint.

Cite this