Modeling and Simulation of the Impact of Feed Gas Perturbation on CO2 Removal in a Polymeric Hollow Fiber Membrane

Research output: Contribution to journalArticlepeer-review

Abstract

A membrane contactor is a device that attains the transfer of gas/liquid or liquid/liquid mass without dispersion of one phase within another. Membrane contactor modules generally provide 30 times more surface area than can be achieved in traditional gas absorption towers and 500 times what can be obtained in liquid/liquid extraction columns. By contrast, membrane contactor design has limitations, as the presence of the membrane adds additional resistance to mass transfer compared with conventional solvent absorption systems. Increasing mass transfer in the gas and solvent phase boundary layers is necessary to reduce additional resistance. This study aims to increase the mass transfer in the gas phase layer without interfering with membrane structure by oscillating the velocity of the feed gas. Therefore, an unsteady state mathematical model was improved to consider feed gas oscillation. The model equation was solved using Comsol Multiphysics version 6.0. The simulation results reveal that the maximum CO2 removal rate was about 30% without oscillation, and at an oscillation frequency of 0.05 Hz, the CO2 percent removal was almost doubled.

Original languageEnglish
Article number3783
JournalPolymers
Volume14
Issue number18
DOIs
Publication statusPublished - Sept 2022

Keywords

  • CFD simulation
  • CO removal
  • membrane contactor
  • oscillating flow
  • overall mass transfer coefficient
  • potassium glycinate

ASJC Scopus subject areas

  • Chemistry(all)
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Modeling and Simulation of the Impact of Feed Gas Perturbation on CO2 Removal in a Polymeric Hollow Fiber Membrane'. Together they form a unique fingerprint.

Cite this