TY - JOUR
T1 - Modeling two-person segmentation and locomotion for stereoscopic action identification
T2 - A sustainable video surveillance system
AU - Khalid, Nida
AU - Gochoo, Munkhjargal
AU - Jalal, Ahmad
AU - Kim, Kibum
N1 - Funding Information:
Funding: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (No. 2018R1D1A1A0208 5645). Also, this work was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: 202012D05-02).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/1/2
Y1 - 2021/1/2
N2 - Due to the constantly increasing demand for automatic tracking and recognition systems, there is a need for more proficient, intelligent and sustainable human activity tracking. The main purpose of this study is to develop an accurate and sustainable human action tracking system that is capable of error-free identification of human movements irrespective of the environment in which those actions are performed. Therefore, in this paper we propose a stereoscopic Human Action Recognition (HAR) system based on the fusion of RGB (red, green, blue) and depth sensors. These sensors give an extra depth of information which enables the three-dimensional (3D) tracking of each and every movement performed by humans. Human actions are tracked according to four features, namely, (1) geodesic distance; (2) 3D Cartesian-plane features; (3) joints Motion Capture (MOCAP) features and (4) way-points trajectory generation. In order to represent these features in an optimized form, Particle Swarm Optimization (PSO) is applied. After optimization, a neuro-fuzzy classifier is used for classification and recognition. Extensive experimentation is performed on three challenging datasets: A Nanyang Technological University (NTU) RGB+D dataset; a UoL (University of Lincoln) 3D social activity dataset and a Collective Activity Dataset (CAD). Evaluation experiments on the proposed system proved that a fusion of vision sensors along with our unique features is an efficient approach towards developing a robust HAR system, having achieved a mean accuracy of 93.5% with the NTU RGB+D dataset, 92.2% with the UoL dataset and 89.6% with the Collective Activity dataset. The developed system can play a significant role in many computer vision-based applications, such as intelligent homes, offices and hospitals, and surveillance systems.
AB - Due to the constantly increasing demand for automatic tracking and recognition systems, there is a need for more proficient, intelligent and sustainable human activity tracking. The main purpose of this study is to develop an accurate and sustainable human action tracking system that is capable of error-free identification of human movements irrespective of the environment in which those actions are performed. Therefore, in this paper we propose a stereoscopic Human Action Recognition (HAR) system based on the fusion of RGB (red, green, blue) and depth sensors. These sensors give an extra depth of information which enables the three-dimensional (3D) tracking of each and every movement performed by humans. Human actions are tracked according to four features, namely, (1) geodesic distance; (2) 3D Cartesian-plane features; (3) joints Motion Capture (MOCAP) features and (4) way-points trajectory generation. In order to represent these features in an optimized form, Particle Swarm Optimization (PSO) is applied. After optimization, a neuro-fuzzy classifier is used for classification and recognition. Extensive experimentation is performed on three challenging datasets: A Nanyang Technological University (NTU) RGB+D dataset; a UoL (University of Lincoln) 3D social activity dataset and a Collective Activity Dataset (CAD). Evaluation experiments on the proposed system proved that a fusion of vision sensors along with our unique features is an efficient approach towards developing a robust HAR system, having achieved a mean accuracy of 93.5% with the NTU RGB+D dataset, 92.2% with the UoL dataset and 89.6% with the Collective Activity dataset. The developed system can play a significant role in many computer vision-based applications, such as intelligent homes, offices and hospitals, and surveillance systems.
KW - Geodesic distance
KW - Human action recognition
KW - Human locomotion
KW - Neuro-fuzzy classifier
KW - Particle swarm optimization
KW - RGB-D sensors
KW - Trajectory features
UR - http://www.scopus.com/inward/record.url?scp=85099551897&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099551897&partnerID=8YFLogxK
U2 - 10.3390/su13020970
DO - 10.3390/su13020970
M3 - Article
AN - SCOPUS:85099551897
SN - 2071-1050
VL - 13
SP - 1
EP - 30
JO - Sustainability (Switzerland)
JF - Sustainability (Switzerland)
IS - 2
M1 - 970
ER -