Abstract
A mathematical description of non-Newtonian fluids, in particular, emulsions, is of special importance now that most of the enhanced oil recovery methods are being modelled in increasing detail. Only recently a few characteristics of emulsion flow have been incorporated in some of the simulators. Nearly all enhanced oil recovery processes involve emulsion formation and flow in some form or other. Representation of such flow in mathematical models is still inadequate. This paper investigates the rheology of emulsions, their formation in porous media, and subsequent flow, from a mathematical standpoint. A critical evaluation of several models describing the flow of pseudoplastic fluids in porous media is presented. The models are expressed in a unified form that makes it possible to detect differences between the various models. The assumptions underlying the various models are discussed in detail. Furthermore, the paper gives a summary of the rheology and in situ formation of emulsions, the role of a variety of other factors responsible for emulsification in porous media, and it introduces a flow model for both Newtonian and non-Newtonian emulsions that is practical, and especially suitable for use in numerical simulation of EOR processes.
Original language | English |
---|---|
Pages (from-to) | 30-38 |
Number of pages | 9 |
Journal | Journal of Canadian Petroleum Technology |
Volume | 34 |
Issue number | 6 |
Publication status | Published - Jun 1 1995 |
ASJC Scopus subject areas
- Chemical Engineering(all)
- Fuel Technology
- Energy Engineering and Power Technology