TY - JOUR
T1 - Molecular analyses indicate profuse bacterial diversity in primary and post- treatment endodontic infections within a cohort from the United Arab Emirates-A preliminary study
AU - Abraham, Sheela B.
AU - Al-Marzooq, Farah
AU - Samaranayake, Lakshman
AU - Hamoudi, Rifat Akram
AU - Himratul-Aznita, Wan Harun
AU - Ahmed, Hany Mohamed Aly
N1 - Publisher Copyright:
© 2024 B. Abraham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/7
Y1 - 2024/7
N2 - Objective Endodontic microbiota appears to undergo evolutionary changes during disease progression from inflammation to necrosis and post-treatment. The aim of this study was to compare microbiome composition and diversity in primary and post-treatment endodontic infections from a cohort of patients from the UAE. Design Intracanal samples were collected from primarily infected (n = 10) and post-treatment infected (n = 10) root canals of human teeth using sterile paper points. Bacterial DNA was amplified from seven hypervariable regions (V2–V4 and V6–V9) of the 16S rRNA gene, then sequenced using next-generation sequencing technology. The data was analyzed using appropriate bioinformatic tools. Results Analyses of all the samples revealed eight major bacterial phyla, 112 genera and 260 species. Firmicutes was the most representative phylum in both groups and was significantly more abundant in the post-treatment (54.4%) than in primary (32.2%) infections (p>0.05). A total of 260 operational taxonomic units (OTUs) were identified, of which 126 (48.5%) were shared between the groups, while 83 (31.9%) and 51 (19.6%) disparate species were isolated from primary and post-treatment infections, respectively. A significant difference in beta, but not alpha diversity was noted using several different indices (p< 0.05). Differential abundance analysis indicated that, Prevotella maculosa, Streptococcus constellatus, Novosphigobium sediminicola and Anaerococcus octavius were more abundant in primary infections while Enterrococcus faecalis, Bifidobacterium dentium, Olsenella profusa and Actinomyces dentalis were more abundant in post-treatment infections (p <0.05). Conclusion Significant differences in the microbiome composition and diversity in primary and post-treatment endodontic infections were noted in our UAE cohort. Such compositional differences of microbiota at various stages of infection could be due to both intrinsic and extrinsic factors impacting the root canal ecosystem during disease progression, as well as during their therapeutic management. Identification of the key microbiota in primarily and secondarily infected root canals can guide in the management of these infections.
AB - Objective Endodontic microbiota appears to undergo evolutionary changes during disease progression from inflammation to necrosis and post-treatment. The aim of this study was to compare microbiome composition and diversity in primary and post-treatment endodontic infections from a cohort of patients from the UAE. Design Intracanal samples were collected from primarily infected (n = 10) and post-treatment infected (n = 10) root canals of human teeth using sterile paper points. Bacterial DNA was amplified from seven hypervariable regions (V2–V4 and V6–V9) of the 16S rRNA gene, then sequenced using next-generation sequencing technology. The data was analyzed using appropriate bioinformatic tools. Results Analyses of all the samples revealed eight major bacterial phyla, 112 genera and 260 species. Firmicutes was the most representative phylum in both groups and was significantly more abundant in the post-treatment (54.4%) than in primary (32.2%) infections (p>0.05). A total of 260 operational taxonomic units (OTUs) were identified, of which 126 (48.5%) were shared between the groups, while 83 (31.9%) and 51 (19.6%) disparate species were isolated from primary and post-treatment infections, respectively. A significant difference in beta, but not alpha diversity was noted using several different indices (p< 0.05). Differential abundance analysis indicated that, Prevotella maculosa, Streptococcus constellatus, Novosphigobium sediminicola and Anaerococcus octavius were more abundant in primary infections while Enterrococcus faecalis, Bifidobacterium dentium, Olsenella profusa and Actinomyces dentalis were more abundant in post-treatment infections (p <0.05). Conclusion Significant differences in the microbiome composition and diversity in primary and post-treatment endodontic infections were noted in our UAE cohort. Such compositional differences of microbiota at various stages of infection could be due to both intrinsic and extrinsic factors impacting the root canal ecosystem during disease progression, as well as during their therapeutic management. Identification of the key microbiota in primarily and secondarily infected root canals can guide in the management of these infections.
UR - http://www.scopus.com/inward/record.url?scp=85198908261&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85198908261&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0305537
DO - 10.1371/journal.pone.0305537
M3 - Article
C2 - 39008450
AN - SCOPUS:85198908261
SN - 1932-6203
VL - 19
JO - PLoS ONE
JF - PLoS ONE
IS - 7
M1 - e0305537
ER -