MOVES - IV. Modelling the influence of stellar XUV-flux, cosmic rays, and stellar energetic particles on the atmospheric composition of the hot Jupiter HD 189733b

P. Barth, Ch Helling, E. E. Stüeken, V. Bourrier, N. Mayne, P. B. Rimmer, M. Jardine, A. A. Vidotto, P. J. Wheatley, R. Fares

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Hot Jupiters provide valuable natural laboratories for studying potential contributions of high-energy radiation to pre-biotic synthesis in the atmospheres of exoplanets. In this fourth paper of the Multiwavelength Observations of an eVaporating Exoplanet and its Star (MOVES) programme, we study the effect of different types of high-energy radiation on the production of organic and pre-biotic molecules in the atmosphere of the hot Jupiter HD 189733b. Our model combines X-ray and UV observations from the MOVES programme and 3D climate simulations from the 3D Met Office Unified Model to simulate the atmospheric composition and kinetic chemistry with the STAND2019 network. Also, the effects of galactic cosmic rays and stellar energetic particles are included. We find that the differences in the radiation field between the irradiated dayside and the shadowed nightside lead to stronger changes in the chemical abundances than the variability of the host star's XUV emission. We identify ammonium (NH4+) and oxonium (H3O+) as fingerprint ions for the ionization of the atmosphere by both galactic cosmic rays and stellar particles. All considered types of high-energy radiation have an enhancing effect on the abundance of key organic molecules such as hydrogen cyanide (HCN), formaldehyde (CH2O), and ethylene (C2H4). The latter two are intermediates in the production pathway of the amino acid glycine (C2H5NO2) and abundant enough to be potentially detectable by JWST.

Original languageEnglish
Pages (from-to)6201-6215
Number of pages15
JournalMonthly Notices of the Royal Astronomical Society
Volume502
Issue number4
DOIs
Publication statusPublished - Apr 1 2021

Keywords

  • planet-star interactions
  • planets and satellites: atmospheres
  • planets and satellites: individual: HD 189733b

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'MOVES - IV. Modelling the influence of stellar XUV-flux, cosmic rays, and stellar energetic particles on the atmospheric composition of the hot Jupiter HD 189733b'. Together they form a unique fingerprint.

Cite this