Abstract
We report on the fabrication of nonvolatile organic memory devices that utilize silver-copper (Ag-Cu) nanoparticles as charge storage elements. Herein, Ag-Cu nanoparticles of an average size of 12 nm were impeded between thin layers of polymers: poly(methyl methacrylate) (PMMA), and poly-vinyl-alcohol/poly acrylamide co-acrylic acid with glycerol ionic liquid (PVA-PAA-glycerol). PMMA acts as a dielectric layer, while our newly developed PVA-PAA-glycerol polymer acts as a semiconducting layer. The conductivity of PVA-PAA-glycerol could be controlled conductivity by adjusting the percentage of glycerol. Aluminum films of desired thickness were produced by thermal evaporation and used as electrical electrodes. Capacitance-voltage (C(V)) measurements of the fabricated devices revealed hysteresis with a 10 V window. This is an indication of charge storage within Ag-Cu nanoparticles.
Original language | English |
---|---|
Pages (from-to) | 24-28 |
Number of pages | 5 |
Journal | Synthetic Metals |
Volume | 183 |
DOIs | |
Publication status | Published - 2013 |
Keywords
- Ag-Cu nanoparticles
- Nano-floating gate memory
- Organic memory devices
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry