TY - JOUR
T1 - Nanostructured Design Cathode Materials for Magnesium-Ion Batteries
AU - Javed, Mohsin
AU - Shah, Afzal
AU - Nisar, Jan
AU - Shahzad, Suniya
AU - Haleem, Abdul
AU - Shah, Iltaf
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/1/30
Y1 - 2024/1/30
N2 - Energy is undeniably one of the most fundamental requirements of the current generation. Solar and wind energy are sustainable and renewable energy sources; however, their unpredictability points to the development of energy storage systems (ESSs). There has been a substantial increase in the use of batteries, particularly lithium-ion batteries (LIBs), as ESSs. However, low rate capability and degradation due to electric load in long-range electric vehicles are pushing LIBs to their limits. As alternative ESSs, magnesium-ion batteries (MIBs) possess promising properties and advantages. Cathode materials play a crucial role in MIBs. In this regard, a variety of cathode materials, including Mn-based, Se-based, vanadium- and vanadium oxide-based, S-based, and Mg2+-containing cathodes, have been investigated by experimental and theoretical techniques. Results reveal that the discharge capacity, capacity retention, and cycle life of cathode materials need improvement. Nevertheless, maintaining the long-term stability of the electrode-electrolyte interface during high-voltage operation continues to be a hurdle in the execution of MIBs, despite the continuous research in this field. The current Review mainly focuses on the most recent nanostructured-design cathode materials in an attempt to draw attention to MIBs and promote the investigation of suitable cathode materials for this promising energy storage device.
AB - Energy is undeniably one of the most fundamental requirements of the current generation. Solar and wind energy are sustainable and renewable energy sources; however, their unpredictability points to the development of energy storage systems (ESSs). There has been a substantial increase in the use of batteries, particularly lithium-ion batteries (LIBs), as ESSs. However, low rate capability and degradation due to electric load in long-range electric vehicles are pushing LIBs to their limits. As alternative ESSs, magnesium-ion batteries (MIBs) possess promising properties and advantages. Cathode materials play a crucial role in MIBs. In this regard, a variety of cathode materials, including Mn-based, Se-based, vanadium- and vanadium oxide-based, S-based, and Mg2+-containing cathodes, have been investigated by experimental and theoretical techniques. Results reveal that the discharge capacity, capacity retention, and cycle life of cathode materials need improvement. Nevertheless, maintaining the long-term stability of the electrode-electrolyte interface during high-voltage operation continues to be a hurdle in the execution of MIBs, despite the continuous research in this field. The current Review mainly focuses on the most recent nanostructured-design cathode materials in an attempt to draw attention to MIBs and promote the investigation of suitable cathode materials for this promising energy storage device.
UR - http://www.scopus.com/inward/record.url?scp=85182978739&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85182978739&partnerID=8YFLogxK
U2 - 10.1021/acsomega.3c06576
DO - 10.1021/acsomega.3c06576
M3 - Review article
AN - SCOPUS:85182978739
SN - 2470-1343
VL - 9
SP - 4229
EP - 4245
JO - ACS Omega
JF - ACS Omega
IS - 4
ER -