Navigating the depths: a stratification-aware coarse-to-fine received signal strength-based localization for internet of underwater things

Xiaojun Mei, Dezhi Han, Nasir Saeed, Huafeng Wu, Fahui Miao, Jiangfeng Xian, Xinqiang Chen, Bing Han

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Underwater wireless sensor networks (UWSNs) are the primary enabling technology for the Internet of underwater things (IoUT), with which all underwater objects can interact and communicate. In UWSNs, localization is vital for military or civilized applications since data collected without location are meaningless. However, accurate localization using acoustic signals in UWSNs is challenging, especially for received signal strength (RSS)-based techniques. The adverse effect of hybrid loss (path and absorption loss) and stratified propagation may severely impact localization accuracy. Even though some schemes have been proposed in the literature, the accuracy is unsatisfactory. To this end, this study proposes a coarse-to-fine localization method (CFLM). The problem is reformed into an alternating nonnegative constrained least squares (ANCLS) framework, where a constrained ellipse adjustment (CEA) using block principal pivoting is proposed to obtain the coarse estimation. A refined step using a Taylor series expansion is then further presented, in which a corrected solution is acquired by iteration. Additionally, this study derives the Cramér-Rao lower bound (CRLB) to evaluate the proposed method. Simulation results show that the proposed CFLM improves the localization accuracy by up to 66 percent compared with weighted least squares (WLS), privacy-preserving localization (PPSL), two-step linearization localization approach (TLLA), particle swarm optimization-based (PSO) localization, and differential evolution-based (DE) localization under different scenarios.

Original languageEnglish
Article number1210519
JournalFrontiers in Marine Science
Volume10
DOIs
Publication statusPublished - 2023

Keywords

  • Cramér-Rao low bound (CRLB)
  • received signal strength (RSS)
  • stratification effect
  • target localization
  • underwater wireless sensor networks (UWSNs)

ASJC Scopus subject areas

  • Oceanography
  • Global and Planetary Change
  • Aquatic Science
  • Water Science and Technology
  • Environmental Science (miscellaneous)
  • Ocean Engineering

Fingerprint

Dive into the research topics of 'Navigating the depths: a stratification-aware coarse-to-fine received signal strength-based localization for internet of underwater things'. Together they form a unique fingerprint.

Cite this