TY - JOUR
T1 - Neoproterozoic contaminated MORB of Wadi Ghadir ophiolite, NE Africa
T2 - Geochemical and Nd and Sr isotopic constraints
AU - Basta, Fawzy F.
AU - Maurice, Ayman E.
AU - Bakhit, Bottros R.
AU - Ali, Kamal A.
AU - Manton, William I.
PY - 2011/2
Y1 - 2011/2
N2 - The ophiolitic metabasalts (pillowed and sheeted dikes) of Wadi Ghadir area, Eastern Desert, Egypt, were analyzed for their major, trace and rare earth elements, Nd and Sr isotopes and the chemistry of their plagioclase, amphibole and chlorite was also reported. Geochemically these rocks range from tholeiitic basalt to basaltic andesite. The generally low MgO, Cr and Ni and high Zr contents are consistent with derivation of these rocks from an evolved magma. The high TiO2 contents (mostly between 1.76% and 2.23%) classify Wadi Ghadir ophiolitic metabasalts as MORB ophiolite. The chondrite-normalized REE patterns of most samples display small LREE-enrichment with (La/Yb)n ranging from 1.44 to 2.56. The MORB-normalized spider diagram shows variable LILE abundances, which are either similar to or enriched relative to MORB, and most samples display small Nb depletion. The abundances of some LILE (Ba, Rb and K) as well as Na and Si were modified by post-magmatic seafloor hydrothermal alteration. Enrichment of the least mobile LILE (Th & U) indicates that Wadi Ghadir ophiolitic metabasalts are akin to C (contaminated)-MORB. These geochemical characteristics are similar to BABB modified by contamination.Wadi Ghadir metabasalts have low initial Sr ratios (0.7010-0.7034) which are similar to those of MORB, while their εNd(t) values (+7.7-+4.5) are either more or less positive than the value of depleted mantle (DM). The more positive εNd(t) values indicate DM source for these basalts, while the less positive εNd(t) values reflect the involvement of slightly older component in Wadi Ghadir ophiolite. We suggest that the parent magma of metabasalts was contaminated by slightly older material, most probably oceanic-arc crustal rocks, which caused enrichment in LREE, and by analogy LILE, but did not significantly affect Nd isotopic systematics or modify Sr isotopes.Such contaminated MORB character also revealed by other ophiolitic metavolcanics in the Central Eastern Desert, contrasting the N-MORB character of the Gerf ophiolite in the South Eastern Desert. Moreover, the present work suggests the increase of the degree of contamination of the ophiolitic metabasalts from south to north in the Central Eastern Desert.
AB - The ophiolitic metabasalts (pillowed and sheeted dikes) of Wadi Ghadir area, Eastern Desert, Egypt, were analyzed for their major, trace and rare earth elements, Nd and Sr isotopes and the chemistry of their plagioclase, amphibole and chlorite was also reported. Geochemically these rocks range from tholeiitic basalt to basaltic andesite. The generally low MgO, Cr and Ni and high Zr contents are consistent with derivation of these rocks from an evolved magma. The high TiO2 contents (mostly between 1.76% and 2.23%) classify Wadi Ghadir ophiolitic metabasalts as MORB ophiolite. The chondrite-normalized REE patterns of most samples display small LREE-enrichment with (La/Yb)n ranging from 1.44 to 2.56. The MORB-normalized spider diagram shows variable LILE abundances, which are either similar to or enriched relative to MORB, and most samples display small Nb depletion. The abundances of some LILE (Ba, Rb and K) as well as Na and Si were modified by post-magmatic seafloor hydrothermal alteration. Enrichment of the least mobile LILE (Th & U) indicates that Wadi Ghadir ophiolitic metabasalts are akin to C (contaminated)-MORB. These geochemical characteristics are similar to BABB modified by contamination.Wadi Ghadir metabasalts have low initial Sr ratios (0.7010-0.7034) which are similar to those of MORB, while their εNd(t) values (+7.7-+4.5) are either more or less positive than the value of depleted mantle (DM). The more positive εNd(t) values indicate DM source for these basalts, while the less positive εNd(t) values reflect the involvement of slightly older component in Wadi Ghadir ophiolite. We suggest that the parent magma of metabasalts was contaminated by slightly older material, most probably oceanic-arc crustal rocks, which caused enrichment in LREE, and by analogy LILE, but did not significantly affect Nd isotopic systematics or modify Sr isotopes.Such contaminated MORB character also revealed by other ophiolitic metavolcanics in the Central Eastern Desert, contrasting the N-MORB character of the Gerf ophiolite in the South Eastern Desert. Moreover, the present work suggests the increase of the degree of contamination of the ophiolitic metabasalts from south to north in the Central Eastern Desert.
KW - Contaminated MORB
KW - Eastern Desert
KW - Geochemistry
KW - Neoproterozoic
KW - Sr and Nd isotopes
UR - http://www.scopus.com/inward/record.url?scp=78851468803&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78851468803&partnerID=8YFLogxK
U2 - 10.1016/j.jafrearsci.2010.10.008
DO - 10.1016/j.jafrearsci.2010.10.008
M3 - Article
AN - SCOPUS:78851468803
SN - 1464-343X
VL - 59
SP - 227
EP - 242
JO - Journal of African Earth Sciences
JF - Journal of African Earth Sciences
IS - 2-3
ER -