TY - JOUR
T1 - Northern hemisphere surface freeze-thaw product from aquarius L-band radiometers
AU - Prince, Michael
AU - Roy, Alexandre
AU - Brucker, Ludovic
AU - Royer, Alain
AU - Kim, Youngwook
AU - Zhao, Tianjie
N1 - Funding Information:
Acknowledgements. The authors would like to thank the Canadian Space Agency (CSA) and the National Sciences and Engineering Research Council of Canada (NSERC) for their financial support. Ludovic Brucker was supported by NASA Interdisciplinary Research in Earth Science (IDS).
Publisher Copyright:
© Author(s) 2018.
PY - 2018/11/22
Y1 - 2018/11/22
N2 - In the Northern Hemisphere, seasonal changes in surface freeze-thaw (FT) cycles are an important component of surface energy, hydrological and eco-biogeochemical processes that must be accurately monitored. This paper presents the weekly polar-gridded Aquarius passive L-band surface freeze-thaw product (FT-AP) distributed on the Equal-Area Scalable Earth Grid version 2.0, above the parallel 50°N, with a spatial resolution of 36km × 36km. The FT-AP classification algorithm is based on a seasonal threshold approach using the normalized polarization ratio, references for frozen and thawed conditions and optimized thresholds. To evaluate the uncertainties of the product, we compared it with another satellite FT product also derived from passive microwave observations but at higher frequency: the resampled 37 GHz FT Earth Science Data Record (FT-ESDR). The assessment was carried out during the overlapping period between 2011 and 2014. Results show that 77.1 % of their common grid cells have an agreement better than 80 %. Their differences vary with land cover type (tundra, forest and open land) and freezing and thawing periods. The best agreement is obtained during the thawing transition and over forest areas, with differences between product mean freeze or thaw onsets of under 0.4 weeks. Over tundra, FT-AP tends to detect freeze onset 2-5 weeks earlier than FT-ESDR, likely due to FT sensitivity to the different frequencies used. Analysis with mean surface air temperature time series from six in situ meteorological stations shows that the main discrepancies between FT-AP and FT-ESDR are related to false frozen retrievals in summer for some regions with FT-AP. The Aquarius product is distributed by the U.S. National Snow and Ice Data Center (NSIDC) at https://nsidc.org/data/aq3-ft/versions/5 with the DOI https://doi.org/10.5067/OV4R18NL3BQR..
AB - In the Northern Hemisphere, seasonal changes in surface freeze-thaw (FT) cycles are an important component of surface energy, hydrological and eco-biogeochemical processes that must be accurately monitored. This paper presents the weekly polar-gridded Aquarius passive L-band surface freeze-thaw product (FT-AP) distributed on the Equal-Area Scalable Earth Grid version 2.0, above the parallel 50°N, with a spatial resolution of 36km × 36km. The FT-AP classification algorithm is based on a seasonal threshold approach using the normalized polarization ratio, references for frozen and thawed conditions and optimized thresholds. To evaluate the uncertainties of the product, we compared it with another satellite FT product also derived from passive microwave observations but at higher frequency: the resampled 37 GHz FT Earth Science Data Record (FT-ESDR). The assessment was carried out during the overlapping period between 2011 and 2014. Results show that 77.1 % of their common grid cells have an agreement better than 80 %. Their differences vary with land cover type (tundra, forest and open land) and freezing and thawing periods. The best agreement is obtained during the thawing transition and over forest areas, with differences between product mean freeze or thaw onsets of under 0.4 weeks. Over tundra, FT-AP tends to detect freeze onset 2-5 weeks earlier than FT-ESDR, likely due to FT sensitivity to the different frequencies used. Analysis with mean surface air temperature time series from six in situ meteorological stations shows that the main discrepancies between FT-AP and FT-ESDR are related to false frozen retrievals in summer for some regions with FT-AP. The Aquarius product is distributed by the U.S. National Snow and Ice Data Center (NSIDC) at https://nsidc.org/data/aq3-ft/versions/5 with the DOI https://doi.org/10.5067/OV4R18NL3BQR..
UR - http://www.scopus.com/inward/record.url?scp=85057075132&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85057075132&partnerID=8YFLogxK
U2 - 10.5194/essd-10-2055-2018
DO - 10.5194/essd-10-2055-2018
M3 - Article
AN - SCOPUS:85057075132
SN - 1866-3508
VL - 10
SP - 2055
EP - 2067
JO - Earth System Science Data
JF - Earth System Science Data
IS - 4
ER -