Notice of Retraction: Reliability optimized CMOS gates

Walid Ibrahim, Valeriu Beiu, Hoda Amer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

5 Citations (Scopus)

Abstract

Redundancy at the device/transistor-level has been proposed as the most effective way to improve reliability (as early as 1956). With the exceptional reliability of the CMOS transistors the semiconductor industry was able to fabricate, research on device-level redundancy has dragged for several decades. However, with the increasing sensitivities to noise (both intrinsic and extrinsic) and variations (due to the massive scaling) of CMOS transistors, interest on device-level redundancy has been reviving during the last decade. In this paper we investigate transistor sizing as a method that can significantly reduce the probability of failure due to threshold voltage variations, while having almost no impact on the area. For a given reliability target, we try to identify several transistor sizing combinations for optimizing the trade-off between reliability and the traditional power-area-delay optimization parameters. The simulation results will show that adjusting the sizing of the nMOS and pMOS transistors can have dramatical effects on reliability (e.g., improving the reliability of classical NOR-2 gates by more than five orders of magnitude while also reducing the occupied area by about 10%).

Original languageEnglish
Title of host publication2011 11th IEEE International Conference on Nanotechnology, NANO 2011
PublisherIEEE Computer Society
Pages730-734
Number of pages5
ISBN (Print)9781457715143
DOIs
Publication statusPublished - 2011
Event2011 11th IEEE International Conference on Nanotechnology, NANO 2011 - Portland, OR, United States
Duration: Aug 15 2011Aug 19 2011

Publication series

NameProceedings of the IEEE Conference on Nanotechnology
ISSN (Print)1944-9399
ISSN (Electronic)1944-9380

Other

Other2011 11th IEEE International Conference on Nanotechnology, NANO 2011
Country/TerritoryUnited States
CityPortland, OR
Period8/15/118/19/11

Keywords

  • CMOS gate
  • MOS transistor
  • Reliability
  • optimization
  • sizing
  • variation

ASJC Scopus subject areas

  • Bioengineering
  • Electrical and Electronic Engineering
  • Materials Chemistry
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Notice of Retraction: Reliability optimized CMOS gates'. Together they form a unique fingerprint.

Cite this