TY - JOUR
T1 - Numerical approach for nanofluid transportation due to electric force in a porous enclosure
AU - Li, Zhixiong
AU - Ramzan, M.
AU - Shafee, Ahmad
AU - Saleem, S.
AU - Al-Mdallal, Qasem M.
AU - Chamkha, Ali J.
N1 - Funding Information:
Acknowledgements Above article was supported by the National Sciences Foundation of China (NSFC) (no. U1610109), Yingcai Project of CUMT (YC2017001), UOW and PAPD Vice-Chancellor’s Postdoctoral Research Fellowship.
Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
PY - 2019/6/1
Y1 - 2019/6/1
N2 - In current attempt, nanoparticle Electrohydrodynamic transportation has been modeled numerically via control volume based finite element method. Mixture of Fe3O4 and Ethylene glycol is elected. Impact of radiation parameter (Rd) , voltage supplied (Δ φ) , nanoparticle concentration, Permeability and Reynolds number have been displayed. Results display that permeability and thermal radiation can improve temperature gradient.
AB - In current attempt, nanoparticle Electrohydrodynamic transportation has been modeled numerically via control volume based finite element method. Mixture of Fe3O4 and Ethylene glycol is elected. Impact of radiation parameter (Rd) , voltage supplied (Δ φ) , nanoparticle concentration, Permeability and Reynolds number have been displayed. Results display that permeability and thermal radiation can improve temperature gradient.
UR - http://www.scopus.com/inward/record.url?scp=85054018444&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054018444&partnerID=8YFLogxK
U2 - 10.1007/s00542-018-4153-2
DO - 10.1007/s00542-018-4153-2
M3 - Article
AN - SCOPUS:85054018444
SN - 0946-7076
VL - 25
SP - 2501
EP - 2514
JO - Microsystem Technologies
JF - Microsystem Technologies
IS - 6
ER -