TY - JOUR
T1 - Numerical investigation of conjugate heat transfer in suddenly expanding channels with high expansion ratios
AU - Kalita, Jiten
AU - Kumar, Pankaj
AU - Dutta, Sailen
AU - Al Mdallal, Qasem
N1 - Publisher Copyright:
© 2024 The Authors
PY - 2025/3
Y1 - 2025/3
N2 - This study conducts a numerical investigation of steady-state conjugate heat transfer (CHT) in a suddenly expanding channel with high expansion ratios. Utilizing a compact finite difference scheme on non-uniform Cartesian grids for the ψ-v form of the Navier–Stokes (N–S) equations, coupled with a higher-order compact (HOC) scheme for the energy equations in both fluid and solid regions, the research examines two expansion ratios. Heat transfer characteristics are evaluated across a range of parameters, including Reynolds number (35≤Re≤90), conductivity ratio (1≤k≤1000), Prandtl number (0.1≤Pr≤20), and slab thickness (a≤b≤6a). The paper first provides a concise overview of the flow characteristics, followed by a detailed analysis of heat transfer behavior. Results reveal that isotherms remain concentrated near recirculation zones, with a vertical decline in temperature within the solid region. The heat transfer rate increases with higher values of Re, k and Pr, while it decreases with increasing b. Furthermore, higher expansion ratios negatively impact the heat transfer rate, as the flow fully develops at an earlier location. The flow characteristics obtained are in excellent agreement with previously reported data, offering a comprehensive and novel insight into heat transfer dynamics, potentially transforming the understanding in this domain.
AB - This study conducts a numerical investigation of steady-state conjugate heat transfer (CHT) in a suddenly expanding channel with high expansion ratios. Utilizing a compact finite difference scheme on non-uniform Cartesian grids for the ψ-v form of the Navier–Stokes (N–S) equations, coupled with a higher-order compact (HOC) scheme for the energy equations in both fluid and solid regions, the research examines two expansion ratios. Heat transfer characteristics are evaluated across a range of parameters, including Reynolds number (35≤Re≤90), conductivity ratio (1≤k≤1000), Prandtl number (0.1≤Pr≤20), and slab thickness (a≤b≤6a). The paper first provides a concise overview of the flow characteristics, followed by a detailed analysis of heat transfer behavior. Results reveal that isotherms remain concentrated near recirculation zones, with a vertical decline in temperature within the solid region. The heat transfer rate increases with higher values of Re, k and Pr, while it decreases with increasing b. Furthermore, higher expansion ratios negatively impact the heat transfer rate, as the flow fully develops at an earlier location. The flow characteristics obtained are in excellent agreement with previously reported data, offering a comprehensive and novel insight into heat transfer dynamics, potentially transforming the understanding in this domain.
KW - Conjugate heat transfer
KW - High expansion ratio
KW - Recirculation zones
KW - Suddenly expanding channel
UR - http://www.scopus.com/inward/record.url?scp=85213852320&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85213852320&partnerID=8YFLogxK
U2 - 10.1016/j.ijft.2024.101031
DO - 10.1016/j.ijft.2024.101031
M3 - Article
AN - SCOPUS:85213852320
SN - 2666-2027
VL - 26
JO - International Journal of Thermofluids
JF - International Journal of Thermofluids
M1 - 101031
ER -