TY - JOUR
T1 - Nutrigenomic effect of conjugated linoleic acid on growth and meat quality indices of growing rabbit
AU - Abdelatty, A. M.
AU - Mohamed, Shereen A.
AU - Moustafa, Mahmoud M.A.
AU - Al-Mokaddem, Asmaa K.
AU - Baker, M. R.
AU - Elolimy, Ahmed A.
AU - Elmedany, Shawky A.
AU - Hussein, Shaymaa
AU - Farid, Omar A.A.
AU - Sakr, Osama G.
AU - Elhady, Mohamed A.
AU - Bionaz, Massimo
N1 - Publisher Copyright:
Copyright: © 2019 Abdelatty et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.. All rights reserved.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - Conjugated linoleic acid was detected in rabbit caecotrophs, due to the presence of microbial lipid activity in rabbit cecum. However, the effect of CLA as a functional food in growing rabbit is not well established. Therefore, this study was conducted to determine the effect of CLA on production, meat quality, and its nutrigenomic effect on edible parts of rabbit carcass including skeletal muscle, liver, and adipose tissue. Therefore, seventy five weaned V-Line male rabbits, 30 days old, were randomly allocated into three dietary treatments receiving either basal control diet, diet supplemented with 0.5% (CLAL), or 1% CLA (CLAH). Total experimental period (63 d) was segmented into 7 days adaptation and 56 days experimental period. Dietary supplementation of CLA did not alter growth performance, however, the fat percentage of longissimus lumborum muscle was decreased, with an increase in protein and polyunsaturated fatty acids (PUFA) percentage. Saturated fatty acids (SFA) and mono unsaturated fatty acids (MUFA) were not increased in CLA treated groups. There was tissue specific sensing of CLA, since subcutaneous adipose tissue gene expression of PPARA was downregulated, however, CPT1A tended to be upregulated in liver of CLAL group only (P = 0.09). In skeletal muscle, FASN and PPARG were upregulated in CLAH group only (P 0.01). Marked cytoplasmic vacuolation was noticed in liver of CLAH group without altering hepatocyte structure. Adipocyte size was decreased in CLA fed groups, in a dose dependent manner (P >0.01). Cell proliferation determined by PCNA was lower (P >0.01) in adipose tissue of CLA groups. Our data indicate that dietary supplementation of CLA (c9, t11-CLA and t10,c12- CLA) at a dose of 0.5% in growing rabbit diet produce rabbit meat rich in PUFA and lower fat%without altering growth performance and hepatocyte structure.
AB - Conjugated linoleic acid was detected in rabbit caecotrophs, due to the presence of microbial lipid activity in rabbit cecum. However, the effect of CLA as a functional food in growing rabbit is not well established. Therefore, this study was conducted to determine the effect of CLA on production, meat quality, and its nutrigenomic effect on edible parts of rabbit carcass including skeletal muscle, liver, and adipose tissue. Therefore, seventy five weaned V-Line male rabbits, 30 days old, were randomly allocated into three dietary treatments receiving either basal control diet, diet supplemented with 0.5% (CLAL), or 1% CLA (CLAH). Total experimental period (63 d) was segmented into 7 days adaptation and 56 days experimental period. Dietary supplementation of CLA did not alter growth performance, however, the fat percentage of longissimus lumborum muscle was decreased, with an increase in protein and polyunsaturated fatty acids (PUFA) percentage. Saturated fatty acids (SFA) and mono unsaturated fatty acids (MUFA) were not increased in CLA treated groups. There was tissue specific sensing of CLA, since subcutaneous adipose tissue gene expression of PPARA was downregulated, however, CPT1A tended to be upregulated in liver of CLAL group only (P = 0.09). In skeletal muscle, FASN and PPARG were upregulated in CLAH group only (P 0.01). Marked cytoplasmic vacuolation was noticed in liver of CLAH group without altering hepatocyte structure. Adipocyte size was decreased in CLA fed groups, in a dose dependent manner (P >0.01). Cell proliferation determined by PCNA was lower (P >0.01) in adipose tissue of CLA groups. Our data indicate that dietary supplementation of CLA (c9, t11-CLA and t10,c12- CLA) at a dose of 0.5% in growing rabbit diet produce rabbit meat rich in PUFA and lower fat%without altering growth performance and hepatocyte structure.
UR - http://www.scopus.com/inward/record.url?scp=85073106326&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85073106326&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0222404
DO - 10.1371/journal.pone.0222404
M3 - Article
C2 - 31600212
AN - SCOPUS:85073106326
SN - 1932-6203
VL - 14
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e0222404
ER -