On distance Laplacian and distance signless Laplacian eigenvalues of graphs

Kinkar Ch Das, Mustapha Aouchiche, Pierre Hansen

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Let D(G),DL(G) = Diag(Tr) − D(G) and DQ(G) = Diag(Tr) + D(G) be, respectively, the distance matrix, the distance Laplacian matrix and the distance signless Laplacian matrix of graph G, where Diag(Tr) denotes the diagonal matrix of the vertex transmissions in G. The eigenvalues of of DL(G) andDQ(G) will be denoted by (Formula presented.) and (Formula presented.), respectively. In this paper, we study the properties of the distance Laplacian eigenvalues and the distance signless Laplacian eigenvalues of graph G.

Original languageEnglish
Pages (from-to)2307-2324
Number of pages18
JournalLinear and Multilinear Algebra
Volume67
Issue number11
DOIs
Publication statusPublished - Nov 2 2019
Externally publishedYes

Keywords

  • 05C05
  • Distance Laplacian eigenvalues
  • diameter
  • distance signless Laplacian eigenvalues
  • domination number
  • independence number

ASJC Scopus subject areas

  • Algebra and Number Theory

Fingerprint

Dive into the research topics of 'On distance Laplacian and distance signless Laplacian eigenvalues of graphs'. Together they form a unique fingerprint.

Cite this